# Copyright (c) Alibaba, Inc. and its affiliates. import logging from distutils.version import LooseVersion import torch from mmcv.runner import OptimizerHook as _OptimizerHook from easycv.utils.dist_utils import get_dist_info if LooseVersion(torch.__version__) >= LooseVersion('1.6.0'): from torch.cuda import amp else: try: from apex import amp except ImportError: logging.warning( 'apex not installed, please install apex from https://www.github.com/nvidia/apex if you want to use fp16.' ) class OptimizerHook(_OptimizerHook): def __init__(self, update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, ignore_key=[], ignore_key_epoch=[], multiply_key=[], multiply_rate=[]): ''' ignore_key: [str,...], ignore_key[i], name of parameters, which's gradient will be set to zero before every optimizer step when epoch < ignore_key_epoch[i] ignore_key_epoch: [int,...], epoch < ignore_key_epoch[i], ignore_key[i]'s gradient will be set to zero. multiply_key:[str,...] multiply_key[i], name of parameters, which will set different learning rate ratio by multipy_rate multiply_rate:[float,...] multiply_rate[i], different ratio ''' self.grad_clip = grad_clip self.coalesce = coalesce self.bucket_size_mb = bucket_size_mb self.update_interval = update_interval self.ignore_key = ignore_key self.ignore_key_epoch = ignore_key_epoch self.multiply_key = multiply_key self.multiply_rate = multiply_rate def before_run(self, runner): runner.optimizer.zero_grad() def after_train_iter(self, runner): if not torch.isnan(runner.outputs['loss']): runner.outputs['loss'] /= self.update_interval runner.outputs['loss'].backward() for name, p in runner.model.module.named_parameters(): for k, epoch in zip(self.ignore_key, self.ignore_key_epoch): if k in name and runner.epoch < epoch: p.grad = None for name, p in runner.model.module.named_parameters(): for k, ratio in zip(self.multiply_key, self.multiply_rate): if k in name: p.grad = p.grad * ratio if self.every_n_iters(runner, self.update_interval): if self.grad_clip is not None: self.clip_grads(runner.model.parameters()) runner.optimizer.step() runner.optimizer.zero_grad() else: rank, _ = get_dist_info() # catch nan loss, not update, zero_grad to pass if rank == 0: runner.logger.info('catch nan loss in iter %d, epoch %d' % (runner.iter, runner.epoch)) if self.every_n_iters(runner, self.update_interval): if self.grad_clip is not None: self.clip_grads(runner.model.parameters()) runner.optimizer.zero_grad() class AMPFP16OptimizerHook(OptimizerHook): def __init__(self, update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, ignore_key=[], ignore_key_epoch=[], loss_scale={}): ''' ignore_key: [str,...], ignore_key[i], name of parameters, which's gradient will be set to zero before every optimizer step when epoch < ignore_key_epoch[i] ignore_key_epoch: [int,...], epoch < ignore_key_epoch[i], ignore_key[i]'s gradient will be set to zero. loss_scale (float | dict): grade scale config. If loss_scale is a float, static loss scaling will be used with the specified scale. It can also be a dict containing arguments of GradScalar. For Pytorch >= 1.6, we use official torch.cuda.amp.GradScaler. please refer to: https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler for the parameters. ''' self.grad_clip = grad_clip self.coalesce = coalesce self.bucket_size_mb = bucket_size_mb self.update_interval = update_interval self.ignore_key = ignore_key self.ignore_key_epoch = ignore_key_epoch self._scale_update_param = None if LooseVersion(torch.__version__) >= LooseVersion('1.6.0'): if isinstance(loss_scale, float): self._scale_update_param = loss_scale self.scaler = amp.GradScaler(init_scale=loss_scale) elif isinstance(loss_scale, dict): self.scaler = amp.GradScaler(**loss_scale) else: raise ValueError( '`loss_scale` type must be in [float, dict], but got {loss_scale}' ) def before_run(self, runner): logging.info('open fp16') # set `fp16_enabled` flag. adapt to mmdet # TODO: find a more pretty way to adapt mmdet for m in runner.model.modules(): if hasattr(m, 'fp16_enabled'): m.fp16_enabled = True runner.optimizer.zero_grad() def after_train_iter(self, runner): loss = runner.outputs['loss'] / self.update_interval _, world_size = get_dist_info() if LooseVersion(torch.__version__) >= LooseVersion('1.6.0'): self.scaler.scale(loss).backward() for name, p in runner.model.module.named_parameters(): for k, epoch in zip(self.ignore_key, self.ignore_key_epoch): if k in name and runner.epoch < epoch: p.grad = None if self.every_n_iters(runner, self.update_interval): self.scaler.unscale_(runner.optimizer) if self.grad_clip is not None: self.clip_grads(runner.model.parameters()) self.scaler.step(runner.optimizer) self.scaler.update(self._scale_update_param) runner.optimizer.zero_grad() else: with amp.scale_loss(loss, runner.optimizer) as scaled_loss: scaled_loss.backward() for name, p in runner.model.module.named_parameters(): for k, epoch in zip(self.ignore_key, self.ignore_key_epoch): if k in name and runner.epoch < epoch: p.grad = None if self.every_n_iters(runner, self.update_interval): if self.grad_clip is not None: self.clip_grads(runner.model.parameters()) runner.optimizer.step() runner.optimizer.zero_grad()