# Copyright (c) 2014-2021 Megvii Inc And Alibaba PAI Team. All rights reserved. import torch import torch.nn as nn class SiLU(nn.Module): """export-friendly inplace version of nn.SiLU()""" def __init__(self, inplace=True): super().__init__() self.inplace = inplace @staticmethod def forward(x): result = x.clone() torch.sigmoid_(x) return x * result class HSiLU(nn.Module): """ export-friendly inplace version of nn.SiLU() hardsigmoid is better than sigmoid when used for edge model """ def __init__(self, inplace=True): super().__init__() self.inplace = inplace @staticmethod def forward(x): result = x.clone() torch.hardsigmoid(x) return x * result def get_activation(name='silu', inplace=True): if name == 'silu': # @ to do nn.SiLU 1.7.0 # module = nn.SiLU(inplace=inplace) module = SiLU(inplace=inplace) elif name == 'relu': module = nn.ReLU(inplace=inplace) elif name == 'lrelu': module = nn.LeakyReLU(0.1, inplace=inplace) elif name == 'hsilu': module = HSiLU(inplace=inplace) else: raise AttributeError('Unsupported act type: {}'.format(name)) return module class BaseConv(nn.Module): """A Conv2d -> Batchnorm -> silu/leaky relu block""" def __init__(self, in_channels, out_channels, ksize, stride, groups=1, bias=False, act='silu'): super().__init__() # same padding pad = (ksize - 1) // 2 self.conv = nn.Conv2d( in_channels, out_channels, kernel_size=ksize, stride=stride, padding=pad, groups=groups, bias=bias, ) self.bn = nn.BatchNorm2d(out_channels) self.act = get_activation(act, inplace=True) def forward(self, x): return self.act(self.bn(self.conv(x))) def fuseforward(self, x): return self.act(self.conv(x)) class DWConv(nn.Module): """Depthwise Conv + Conv""" def __init__(self, in_channels, out_channels, ksize, stride=1, act='silu'): super().__init__() self.dconv = BaseConv( in_channels, in_channels, ksize=ksize, stride=stride, groups=in_channels, act=act, ) self.pconv = BaseConv( in_channels, out_channels, ksize=1, stride=1, groups=1, act=act) def forward(self, x): x = self.dconv(x) return self.pconv(x) class Bottleneck(nn.Module): # Standard bottleneck def __init__( self, in_channels, out_channels, shortcut=True, expansion=0.5, depthwise=False, act='silu', ): super().__init__() hidden_channels = int(out_channels * expansion) Conv = DWConv if depthwise else BaseConv self.conv1 = BaseConv( in_channels, hidden_channels, 1, stride=1, act=act) self.conv2 = Conv(hidden_channels, out_channels, 3, stride=1, act=act) self.use_add = shortcut and in_channels == out_channels def forward(self, x): y = self.conv2(self.conv1(x)) if self.use_add: y = y + x return y class ResLayer(nn.Module): 'Residual layer with `in_channels` inputs.' def __init__(self, in_channels: int): super().__init__() mid_channels = in_channels // 2 self.layer1 = BaseConv( in_channels, mid_channels, ksize=1, stride=1, act='lrelu') self.layer2 = BaseConv( mid_channels, in_channels, ksize=3, stride=1, act='lrelu') def forward(self, x): out = self.layer2(self.layer1(x)) return x + out class SPPBottleneck(nn.Module): """Spatial pyramid pooling layer used in YOLOv3-SPP""" def __init__(self, in_channels, out_channels, kernel_sizes=(5, 9, 13), activation='silu'): super().__init__() hidden_channels = in_channels // 2 self.conv1 = BaseConv( in_channels, hidden_channels, 1, stride=1, act=activation) self.m = nn.ModuleList([ nn.MaxPool2d(kernel_size=ks, stride=1, padding=ks // 2) for ks in kernel_sizes ]) conv2_channels = hidden_channels * (len(kernel_sizes) + 1) self.conv2 = BaseConv( conv2_channels, out_channels, 1, stride=1, act=activation) def forward(self, x): x = self.conv1(x) x = torch.cat([x] + [m(x) for m in self.m], dim=1) x = self.conv2(x) return x class CSPLayer(nn.Module): """CSP Bottleneck with 3 convolutions""" def __init__( self, in_channels, out_channels, n=1, shortcut=True, expansion=0.5, depthwise=False, act='silu', ): """ Args: in_channels (int): input channels. out_channels (int): output channels. n (int): number of Bottlenecks. Default value: 1. """ # ch_in, ch_out, number, shortcut, groups, expansion super().__init__() hidden_channels = int(out_channels * expansion) # hidden channels self.conv1 = BaseConv( in_channels, hidden_channels, 1, stride=1, act=act) self.conv2 = BaseConv( in_channels, hidden_channels, 1, stride=1, act=act) self.conv3 = BaseConv( 2 * hidden_channels, out_channels, 1, stride=1, act=act) module_list = [ Bottleneck( hidden_channels, hidden_channels, shortcut, 1.0, depthwise, act=act) for _ in range(n) ] self.m = nn.Sequential(*module_list) def forward(self, x): x_1 = self.conv1(x) x_2 = self.conv2(x) x_1 = self.m(x_1) x = torch.cat((x_1, x_2), dim=1) return self.conv3(x) class Focus(nn.Module): """Focus width and height information into channel space.""" def __init__(self, in_channels, out_channels, ksize=1, stride=1, act='silu'): super().__init__() self.conv = BaseConv( in_channels * 4, out_channels, ksize, stride, act=act) def forward(self, x): # shape of x (b,c,w,h) -> y(b,4c,w/2,h/2) patch_top_left = x[..., ::2, ::2] patch_top_right = x[..., ::2, 1::2] patch_bot_left = x[..., 1::2, ::2] patch_bot_right = x[..., 1::2, 1::2] x = torch.cat( ( patch_top_left, patch_bot_left, patch_top_right, patch_bot_right, ), dim=1, ) return self.conv(x)