# Copyright (c) 2014-2021 Megvii Inc, AlanLi And Alibaba PAI Team. All rights reserved. import torch import torch.nn as nn class SiLU(nn.Module): """export-friendly inplace version of nn.SiLU()""" def __init__(self, inplace=True): super().__init__() self.inplace = inplace @staticmethod def forward(x): # clone is not supported with nni 2.6.1 # result = x.clone() # torch.sigmoid_(x) return x * torch.sigmoid(x) class HSiLU(nn.Module): """ export-friendly inplace version of nn.SiLU() hardsigmoid is better than sigmoid when used for edge model """ def __init__(self, inplace=True): super().__init__() self.inplace = inplace @staticmethod def forward(x): # clone is not supported with nni 2.6.1 # result = x.clone() # torch.hardsigmoid(x) return x * torch.hardsigmoid(x) def get_activation(name='silu', inplace=True): if name == 'silu': # @ to do nn.SiLU 1.7.0 # module = nn.SiLU(inplace=inplace) module = SiLU(inplace=inplace) elif name == 'relu': module = nn.ReLU(inplace=inplace) elif name == 'lrelu': module = nn.LeakyReLU(0.1, inplace=inplace) elif name == 'hsilu': module = HSiLU(inplace=inplace) elif name == 'identity': module = nn.Identity(inplace=inplace) else: raise AttributeError('Unsupported act type: {}'.format(name)) return module class BaseConv(nn.Module): """A Conv2d -> Batchnorm -> silu/leaky relu block""" def __init__(self, in_channels, out_channels, ksize, stride, groups=1, bias=False, act='silu'): super().__init__() # same padding pad = (ksize - 1) // 2 self.conv = nn.Conv2d( in_channels, out_channels, kernel_size=ksize, stride=stride, padding=pad, groups=groups, bias=bias, ) self.bn = nn.BatchNorm2d(out_channels) self.act = get_activation(act, inplace=True) def forward(self, x): return self.act(self.bn(self.conv(x))) def fuseforward(self, x): return self.act(self.conv(x)) class DWConv(nn.Module): """Depthwise Conv + Conv""" def __init__(self, in_channels, out_channels, ksize, stride=1, act='silu'): super().__init__() self.dconv = BaseConv( in_channels, in_channels, ksize=ksize, stride=stride, groups=in_channels, act=act, ) self.pconv = BaseConv( in_channels, out_channels, ksize=1, stride=1, groups=1, act=act) def forward(self, x): x = self.dconv(x) return self.pconv(x) class Bottleneck(nn.Module): # Standard bottleneck def __init__( self, in_channels, out_channels, shortcut=True, expansion=0.5, depthwise=False, act='silu', ): super().__init__() hidden_channels = int(out_channels * expansion) Conv = DWConv if depthwise else BaseConv self.conv1 = BaseConv( in_channels, hidden_channels, 1, stride=1, act=act) self.conv2 = Conv(hidden_channels, out_channels, 3, stride=1, act=act) self.use_add = shortcut and in_channels == out_channels def forward(self, x): y = self.conv2(self.conv1(x)) if self.use_add: y = y + x return y class ResLayer(nn.Module): 'Residual layer with `in_channels` inputs.' def __init__(self, in_channels: int): super().__init__() mid_channels = in_channels // 2 self.layer1 = BaseConv( in_channels, mid_channels, ksize=1, stride=1, act='lrelu') self.layer2 = BaseConv( mid_channels, in_channels, ksize=3, stride=1, act='lrelu') def forward(self, x): out = self.layer2(self.layer1(x)) return x + out class SPPFBottleneck(nn.Module): """Spatial pyramid pooling layer used in YOLOv3-SPP""" def __init__(self, in_channels, out_channels, kernel_size=5, activation='silu'): super().__init__() hidden_channels = in_channels // 2 self.conv1 = BaseConv( in_channels, hidden_channels, 1, stride=1, act=activation) self.m = nn.MaxPool2d( kernel_size=kernel_size, stride=1, padding=kernel_size // 2) conv2_channels = hidden_channels * 4 self.conv2 = BaseConv( conv2_channels, out_channels, 1, stride=1, act=activation) def forward(self, x): x = self.conv1(x) x1 = self.m(x) x2 = self.m(x1) x = self.conv2(torch.cat([x, x1, x2, self.m(x2)], 1)) return x class SPPBottleneck(nn.Module): """Spatial pyramid pooling layer used in YOLOv3-SPP""" def __init__(self, in_channels, out_channels, kernel_sizes=(5, 9, 13), activation='silu'): super().__init__() hidden_channels = in_channels // 2 self.conv1 = BaseConv( in_channels, hidden_channels, 1, stride=1, act=activation) self.m = nn.ModuleList([ nn.MaxPool2d(kernel_size=ks, stride=1, padding=ks // 2) for ks in kernel_sizes ]) conv2_channels = hidden_channels * (len(kernel_sizes) + 1) self.conv2 = BaseConv( conv2_channels, out_channels, 1, stride=1, act=activation) def forward(self, x): x = self.conv1(x) x = torch.cat([x] + [m(x) for m in self.m], dim=1) x = self.conv2(x) return x class CSPLayer(nn.Module): """CSP Bottleneck with 3 convolutions""" def __init__( self, in_channels, out_channels, n=1, shortcut=True, expansion=0.5, depthwise=False, act='silu', ): """ Args: in_channels (int): input channels. out_channels (int): output channels. n (int): number of Bottlenecks. Default value: 1. """ # ch_in, ch_out, number, shortcut, groups, expansion super().__init__() hidden_channels = int(out_channels * expansion) # hidden channels self.conv1 = BaseConv( in_channels, hidden_channels, 1, stride=1, act=act) self.conv2 = BaseConv( in_channels, hidden_channels, 1, stride=1, act=act) self.conv3 = BaseConv( 2 * hidden_channels, out_channels, 1, stride=1, act=act) module_list = [ Bottleneck( hidden_channels, hidden_channels, shortcut, 1.0, depthwise, act=act) for _ in range(n) ] self.m = nn.Sequential(*module_list) def forward(self, x): x_1 = self.conv1(x) x_2 = self.conv2(x) x_1 = self.m(x_1) x = torch.cat((x_1, x_2), dim=1) return self.conv3(x) class Focus(nn.Module): """Focus width and height information into channel space.""" def __init__(self, in_channels, out_channels, ksize=1, stride=1, act='silu'): super().__init__() self.conv = BaseConv( in_channels * 4, out_channels, ksize, stride, act=act) def forward(self, x): # shape of x (b,c,w,h) -> y(b,4c,w/2,h/2) patch_top_left = x[..., ::2, ::2] patch_top_right = x[..., ::2, 1::2] patch_bot_left = x[..., 1::2, ::2] patch_bot_right = x[..., 1::2, 1::2] x = torch.cat( ( patch_top_left, patch_bot_left, patch_top_right, patch_bot_right, ), dim=1, ) return self.conv(x) class GSConv(nn.Module): """ GSConv is used to merge the channel information of DSConv and BaseConv You can refer to https://github.com/AlanLi1997/slim-neck-by-gsconv for more details """ def __init__(self, c1, c2, k=1, s=1, g=1, act='silu'): super().__init__() c_ = c2 // 2 self.cv1 = BaseConv(c1, c_, k, s, g, act) self.cv2 = BaseConv(c_, c_, 5, 1, c_, act) def forward(self, x): x1 = self.cv1(x) x2 = torch.cat((x1, self.cv2(x1)), 1) # shuffle b, n, h, w = x2.data.size() b_n = b * n // 2 y = x2.reshape(b_n, 2, h * w) y = y.permute(1, 0, 2) y = y.reshape(2, -1, n // 2, h, w) return torch.cat((y[0], y[1]), 1) class GSBottleneck(nn.Module): """ The use of GSBottleneck is to stack the GSConv layer You can refer to https://github.com/AlanLi1997/slim-neck-by-gsconv for more details """ def __init__(self, c1, c2, k=3, s=1): super().__init__() c_ = c2 // 2 self.conv_lighting = nn.Sequential( GSConv(c1, c_, 1, 1), GSConv(c_, c2, 1, 1, act='identity')) def forward(self, x): return self.conv_lighting(x) class VoVGSCSP(nn.Module): """ VoVGSCSP is a new neck structure used in CSPNet You can refer to https://github.com/AlanLi1997/slim-neck-by-gsconv for more details """ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): super().__init__() c_ = int(c2 * e) self.cv1 = BaseConv(c1, c_, 1, 1) self.cv2 = BaseConv(2 * c_, c2, 1, 1) self.m = nn.Sequential(*(GSBottleneck(c_, c_) for _ in range(n))) def forward(self, x): x1 = self.cv1(x) return self.cv2(torch.cat((self.m(x1), x1), dim=1))