# Copyright (c) Alibaba, Inc. and its affiliates. import torch from PIL import Image from easycv.datasets.registry import DATASETS from easycv.datasets.shared.base import BaseDataset @DATASETS.register_module class ClsDataset(BaseDataset): """Dataset for classification Args: data_source: data source to parse input data pipeline: transforms list """ def __init__(self, data_source, pipeline): super(ClsDataset, self).__init__(data_source, pipeline) def __getitem__(self, idx): img, target = self.data_source.get_sample(idx) if isinstance(img, list): # img is list, means contains multi img mlist = [] for m in img: assert isinstance(m, Image.Image), \ f'The output from the data source must be an Image, got: {type(m)}. \ Please ensure that the list file does not contain labels.' m = (self.pipeline(m)).unsqueeze(0) mlist.append(m) img_cat = torch.cat(mlist, dim=0) return dict(img=img_cat, gt_label=torch.tensor(target).long()) else: img = self.pipeline(img) return dict(img=img, gt_label=target) def evaluate(self, results, evaluators, logger=None, topk=(1, 5)): '''evaluate classification task Args: results: a dict of list of tensor, including prediction and groundtruth info, where prediction tensor is NxC,and the same with groundtruth labels. evaluators: a list of evaluator Return: eval_result: a dict of float, different metric values ''' assert len(evaluators) == 1, \ 'classification evaluation only support one evaluator' gt_labels = results.pop('gt_labels') eval_res = evaluators[0].evaluate(results, gt_labels) return eval_res