_base_ = './yolox_s_8xb16_300e_coco.py' # model settings model = dict(model_type='tiny') CLASSES = [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] img_scale = (416, 416) random_size = (10, 20) scale_ratio = (0.5, 1.5) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='MMMosaic', img_scale=img_scale, pad_val=114.0), dict( type='MMRandomAffine', scaling_ratio_range=scale_ratio, border=(-img_scale[0] // 2, -img_scale[1] // 2)), dict( type='MMMixUp', # s m x l; tiny nano will detele img_scale=img_scale, ratio_range=(0.8, 1.6), pad_val=114.0), dict( type='MMPhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='MMRandomFlip', flip_ratio=0.5), dict(type='MMResize', keep_ratio=True), dict(type='MMPad', pad_to_square=True, pad_val=(114.0, 114.0, 114.0)), dict(type='MMNormalize', **img_norm_cfg), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] test_pipeline = [ dict(type='MMResize', img_scale=img_scale, keep_ratio=True), dict(type='MMPad', pad_to_square=True, pad_val=(114.0, 114.0, 114.0)), dict(type='MMNormalize', **img_norm_cfg), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img']) ] data_root = 'data/coco/' train_dataset = dict( type='DetImagesMixDataset', data_source=dict( type='DetSourceCoco', ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=[ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True) ], classes=CLASSES, filter_empty_gt=False, iscrowd=False), pipeline=train_pipeline, dynamic_scale=img_scale) val_dataset = dict( type='DetImagesMixDataset', imgs_per_gpu=2, data_source=dict( type='DetSourceCoco', ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=[ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True) ], classes=CLASSES, filter_empty_gt=False, iscrowd=True), pipeline=test_pipeline, dynamic_scale=None, label_padding=False) data = dict( imgs_per_gpu=16, workers_per_gpu=4, train=train_dataset, val=val_dataset) # additional hooks interval = 10 custom_hooks = [ dict( type='YOLOXModeSwitchHook', no_aug_epochs=15, skip_type_keys=('MMMosaic', 'MMRandomAffine', 'MMMixUp'), priority=48), dict( type='SyncRandomSizeHook', ratio_range=random_size, img_scale=img_scale, interval=interval, priority=48), dict( type='SyncNormHook', num_last_epochs=15, interval=interval, priority=48) ] eval_pipelines = [ dict( mode='test', data=data['val'], evaluators=[dict(type='CocoDetectionEvaluator', classes=CLASSES)], ) ]