{ "cells": [ { "cell_type": "markdown", "id": "69debbc2-30e8-4390-805a-cb6ebad35f3f", "metadata": { "tags": [] }, "source": [ "## EasyCV图像分割-Mask2Former\n", "本文将介绍如何利用EasyCV使用Transformer-based图像分割算法[Mask2Former](https://arxiv.org/pdf/2112.01527.pdf)进行图像分割模型的训练,以及如何利用训练好的模型进行图像分割预测\n", " \n" ] }, { "cell_type": "markdown", "id": "b9ef9614-cb63-487f-bafb-c62c90ae607b", "metadata": {}, "source": [ "## 运行环境要求\n", "\n", "PAI-Pytorch镜像 or 原生Pytorch1.8+以上环境 GPU机器, 内存32G以上" ] }, { "cell_type": "markdown", "id": "f855f736-c08a-44c2-b1c1-33a8e7043864", "metadata": { "tags": [] }, "source": [ "## 安装依赖包\n", "\n", "注: 在PAI-DSW docker中无需安装相关依赖,可跳过此部分 在本地notebook环境中执行\n" ] }, { "cell_type": "markdown", "id": "43e60ee5-f52f-4045-bc69-4a123731a5a5", "metadata": {}, "source": [ "1、 首先,安装pytorch和对应版本的torchvision,支持Pytorch1.8以上版本" ] }, { "cell_type": "code", "execution_count": null, "id": "f97b2295-4d67-4a83-8637-ecde48fa3001", "metadata": {}, "outputs": [], "source": [ "# install pytorch and torch vision\n", "! conda install --yes pytorch==1.10.0 torchvision==0.11.0 -c pytorch" ] }, { "cell_type": "markdown", "id": "ff3ed9f8-703d-416e-8b70-10a8ce029e8d", "metadata": {}, "source": [ "2、获取torch和cuda版本,安装对应版本的mmcv和nvidia-dali" ] }, { "cell_type": "code", "execution_count": null, "id": "c95571d5-3065-40b3-ad53-dc3063db8604", "metadata": {}, "outputs": [], "source": [ "import torch\n", "import os\n", "os.environ['CUDA']='cu' + torch.version.cuda.replace('.', '')\n", "os.environ['Torch']='torch'+torch.version.__version__.replace('+PAI', '')\n", "!echo \"cuda version: $CUDA\"\n", "!echo \"pytorch version: $Torch\"" ] }, { "cell_type": "code", "execution_count": null, "id": "ce3dca16-9baf-42f8-94c4-5ea7f087d61e", "metadata": {}, "outputs": [], "source": [ "# install some python deps\n", "! pip install mmdet\n", "! pip install mmcv-full==1.4.4 -f https://download.openmmlab.com/mmcv/dist/${CUDA}/${Torch}/index.html\n", "! pip install http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/third_party/nvidia_dali_cuda100-0.25.0-1535750-py3-none-manylinux2014_x86_64.whl" ] }, { "cell_type": "markdown", "id": "3dee3a99-191a-4515-97dd-80841db43775", "metadata": {}, "source": [ "3、 安装EasyCV算法包" ] }, { "cell_type": "code", "execution_count": null, "id": "7f03f9e9-6029-4918-b8dc-533db9c7fae3", "metadata": {}, "outputs": [], "source": [ "pip install pai-easycv" ] }, { "cell_type": "markdown", "id": "3483904d-91dd-44c4-a486-246aa38d4124", "metadata": {}, "source": [ "4、 简单验证" ] }, { "cell_type": "code", "execution_count": null, "id": "4d382373-76a0-4fbc-b09f-5d082aab5104", "metadata": { "tags": [] }, "outputs": [], "source": [ "from easycv.apis import *" ] }, { "cell_type": "markdown", "id": "6da90a06", "metadata": {}, "source": [ "5、安装deformable_attention" ] }, { "cell_type": "code", "execution_count": null, "id": "5a5d35b9", "metadata": {}, "outputs": [], "source": [ "import easycv\n", "print(easycv.__file__)\n", "# 进入easycv安装目录编译deformable_attention\n", "! cd /home/pai/lib/python3.6/site-packages/easycv/thirdparty/deformable_attention && python setup.py build install " ] }, { "cell_type": "markdown", "id": "29bb3d55-d00b-453b-9522-c686260e325c", "metadata": {}, "source": [ "## 数据准备\n", "\n", "接下来介绍基于coco数据集的实例分割训练示例,你可以下载[COCO2017](https://cocodataset.org/#download)数据,也可以使用我们提供了示例COCO数据" ] }, { "cell_type": "code", "execution_count": null, "id": "9492b324-17d9-4963-b7dd-a49f684c54c3", "metadata": {}, "outputs": [], "source": [ "! wget http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/small_coco_demo/small_coco_demo.tar.gz && tar -zxf small_coco_demo.tar.gz" ] }, { "cell_type": "code", "execution_count": null, "id": "5fdc9dc3-0886-493f-be5b-f858eff72164", "metadata": {}, "outputs": [], "source": [ "# 重命名文件夹\n", "! mkdir -p data/ && mv small_coco_demo database/coco" ] }, { "cell_type": "markdown", "id": "dfcdc227", "metadata": {}, "source": [ "data/coco格式如下\n", "\n", "```shell\n", "data/coco/\n", "├── annotations\n", "│ ├── instances_train2017.json\n", "│ └── instances_val2017.json\n", "├── train2017\n", "│ ├── 000000005802.jpg\n", "│ ├── 000000060623.jpg\n", "│ ├── 000000086408.jpg\n", "│ ├── 000000118113.jpg\n", "│ ├── 000000184613.jpg\n", "│ ├── 000000193271.jpg\n", "│ ├── 000000222564.jpg\n", "│ ...\n", "│ └── 000000574769.jpg\n", "└── val2017\n", " ├── 000000006818.jpg\n", " ├── 000000017627.jpg\n", " ├── 000000037777.jpg\n", " ├── 000000087038.jpg\n", " ├── 000000174482.jpg\n", " ├── 000000181666.jpg\n", " ├── 000000184791.jpg\n", " ├── 000000252219.jpg\n", " ...\n", " └── 000000522713.jpg\n", "```" ] }, { "cell_type": "markdown", "id": "c9bd7101-3072-417c-ac54-5d7d254b31b4", "metadata": {}, "source": [ "## 模型训练\n", "\n", "这个Demo中我们采用[Mask2Former](https://arxiv.org/pdf/2112.01527.pdf)图像分割算法训练ResNet50主干网络, 下载示例配置文件" ] }, { "cell_type": "code", "execution_count": null, "id": "ab669385-8525-4694-8388-148ba1c2753a", "metadata": {}, "outputs": [], "source": [ "! rm -rf mask2former_r50_8xb2_e50_instance.py\n", "! wget https://raw.githubusercontent.com/alibaba/EasyCV/master/configs/segmentation/mask2former/mask2former_r50_8xb2_e50_instance.py" ] }, { "cell_type": "markdown", "id": "2890d267-6b95-47e6-9b51-83402446fa7f", "metadata": {}, "source": [ "为了适配小数据,我们对配置文件mask2former_r50_8xb2_e50_instance.py做如下字段的修改,减少训练epoch数目,加大打印日志的频率\n", "\n", "```python\n", "\n", "total_epochs = 3\n", "\n", "#optimizer.lr -> 0.000001\n", "# optimizer\n", "optimizer = dict(\n", " type='AdamW',\n", " lr=0.000001,\n", " weight_decay=0.05,\n", " eps=1e-8,\n", " betas=(0.9, 0.999),\n", " paramwise_options={\n", " 'backbone': dict(lr_mult=0.1),\n", " 'query_embed': dict(weight_decay=0.),\n", " 'query_feat': dict(weight_decay=0.),\n", " 'level_embed': dict(weight_decay=0.),\n", " 'norm': dict(weight_decay=0.),\n", " })\n", "\n", "# log_config.interval 1\n", "log_config = dict(interval=1)\n", "\n", "```\n", "\n", "注意: 如果是使用COCO完整数据训练,为了保证效果,建议使用单机8卡进行训练;\n", "\n", "为了保证模型效果,我们在[预训练模型](http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/segmentation/mask2former_r50_instance/epoch_50.pth)基础上finetune, 执行如下命令启动训练" ] }, { "cell_type": "code", "execution_count": null, "id": "aaf88f46-a578-4dfc-a33f-afa0357f734a", "metadata": {}, "outputs": [], "source": [ "!python -m easycv.tools.train mask2former_r50_8xb2_e50_instance.py --work_dir work_dir/segmentatino/mask2former_r50_instance --load_from http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/segmentation/mask2former_r50_instance/epoch_50.pth" ] }, { "cell_type": "markdown", "id": "fc43e194-d8e7-4796-af3a-1f64663b9744", "metadata": {}, "source": [ "### 预测" ] }, { "cell_type": "markdown", "id": "2cc9e6fc", "metadata": {}, "source": [ "下载测试图片" ] }, { "cell_type": "code", "execution_count": null, "id": "973d5bd4", "metadata": {}, "outputs": [], "source": [ "! wget http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/segmentation/000000123213.jpg" ] }, { "cell_type": "markdown", "id": "3ecb723f", "metadata": {}, "source": [ "使用训练好的模型进行图像分割预测" ] }, { "cell_type": "code", "execution_count": null, "id": "5a5a3632", "metadata": {}, "outputs": [], "source": [ "import torch\n", "import cv2\n", "from IPython.display import Image\n", "from easycv.predictors.segmentation import Mask2formerPredictor\n", "\n", "\n", "predictor = Mask2formerPredictor(model_path='work_dir/segmentatino/mask2former_r50_instance/epoch_3.pth',\n", " config_file='mask2former_r50_8xb2_e50_instance.py',\n", " task_mode='instance')\n", "img = cv2.imread('000000123213.jpg')\n", "predict_out = predictor(['000000123213.jpg'])\n", "instance_img = predictor.show_instance(img, **predict_out[0])\n", "cv2.imwrite('instance_out.jpg',instance_img)\n", "display(Image('000000123213.jpg'))\n", "display(Image('instance_out.jpg'))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.6.13 ('torch1.10')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.13" }, "vscode": { "interpreter": { "hash": "ffac244d5fb3e091416ac35ee470bc03f8b6d092e3cccc2d90f82acef7653459" } } }, "nbformat": 4, "nbformat_minor": 5 }