_base_ = 'configs/base.py' data_all_list = 'data/imagenet_raw/meta/all_labeled.txt' data_root = 'data/imagenet_raw/' total_samples_num = 1281167 part_num = 2048 split_at = [*range(0, total_samples_num, part_num), total_samples_num] split_name = [*['train_idx%d' % i for i in range(len(split_at))], 'val'] img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) data = dict( imgs_per_gpu=256, workers_per_gpu=4, extract=dict( type='RawDataset', data_source=dict( type='ClsSourceImageList', list_file=data_all_list, root=data_root), pipeline=[ dict(type='Resize', size=256), dict(type='CenterCrop', size=224), dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg), dict(type='Collect', keys=['img', 'gt_labels']) ]))