mirror of https://github.com/alibaba/EasyCV.git
310 lines
11 KiB
Python
310 lines
11 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import math
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
|
|
from easycv.file import io
|
|
from easycv.framework.errors import ValueError
|
|
from easycv.utils.misc import deprecated
|
|
from .base import InputProcessor, OutputProcessor, Predictor, PredictorV2
|
|
from .builder import PREDICTORS
|
|
|
|
|
|
class ClsInputProcessor(InputProcessor):
|
|
"""Process inputs for classification models.
|
|
|
|
Args:
|
|
cfg (Config): Config instance.
|
|
pipelines (list[dict]): Data pipeline configs.
|
|
batch_size (int): batch size for forward.
|
|
pil_input (bool): Whether use PIL image. If processor need PIL input, set true, default false.
|
|
threads (int): Number of processes to process inputs.
|
|
mode (str): The image mode into the model.
|
|
"""
|
|
|
|
def __init__(self,
|
|
cfg,
|
|
pipelines=None,
|
|
batch_size=1,
|
|
pil_input=True,
|
|
threads=8,
|
|
mode='BGR'):
|
|
|
|
super(ClsInputProcessor, self).__init__(
|
|
cfg, pipelines=pipelines, batch_size=batch_size, threads=threads)
|
|
self.mode = mode
|
|
self.pil_input = pil_input
|
|
|
|
def _load_input(self, input):
|
|
"""Load image from file or numpy or PIL object.
|
|
Args:
|
|
input: File path or numpy or PIL object.
|
|
Returns:
|
|
{
|
|
'filename': filename,
|
|
'img': img,
|
|
'img_shape': img_shape,
|
|
'img_fields': ['img']
|
|
}
|
|
"""
|
|
if self.pil_input:
|
|
results = {}
|
|
if isinstance(input, str):
|
|
img = Image.open(input)
|
|
if img.mode.upper() != self.mode.upper():
|
|
img = img.convert(self.mode.upper())
|
|
results['filename'] = input
|
|
else:
|
|
if isinstance(input, np.ndarray):
|
|
input = Image.fromarray(input)
|
|
# assert isinstance(input, ImageFile.ImageFile)
|
|
img = input
|
|
results['filename'] = None
|
|
results['img'] = img
|
|
results['img_shape'] = img.size
|
|
results['ori_shape'] = img.size
|
|
results['img_fields'] = ['img']
|
|
return results
|
|
|
|
return super()._load_input(input)
|
|
|
|
|
|
class ClsOutputProcessor(OutputProcessor):
|
|
"""Output processor for processing classification model outputs.
|
|
|
|
Args:
|
|
topk (int): Return top-k results. Default: 1.
|
|
label_map (dict): Dict of class id to class name.
|
|
|
|
"""
|
|
|
|
def __init__(self, topk=1, label_map={}):
|
|
self.topk = topk
|
|
self.label_map = label_map
|
|
super(ClsOutputProcessor, self).__init__()
|
|
|
|
def __call__(self, inputs):
|
|
"""Return top-k results."""
|
|
output_prob = inputs['prob'].data.cpu()
|
|
topk_class = torch.topk(output_prob, self.topk).indices.numpy()
|
|
output_prob = output_prob.numpy()
|
|
batch_results = []
|
|
batch_size = output_prob.shape[0]
|
|
for i in range(batch_size):
|
|
result = {'class': np.squeeze(topk_class[i]).tolist()}
|
|
if isinstance(result['class'], int):
|
|
result['class'] = [result['class']]
|
|
|
|
if len(self.label_map) > 0:
|
|
result['class_name'] = [
|
|
self.label_map[i] for i in result['class']
|
|
]
|
|
result['class_probs'] = {}
|
|
for l_idx, l_name in enumerate(self.label_map):
|
|
result['class_probs'][l_name] = output_prob[i][l_idx]
|
|
|
|
batch_results.append(result)
|
|
return batch_results
|
|
|
|
|
|
@PREDICTORS.register_module()
|
|
class ClassificationPredictor(PredictorV2):
|
|
"""Predictor for classification.
|
|
Args:
|
|
model_path (str): Path of model path.
|
|
config_file (Optinal[str]): config file path for model and processor to init. Defaults to None.
|
|
batch_size (int): batch size for forward.
|
|
device (str): Support 'cuda' or 'cpu', if is None, detect device automatically.
|
|
save_results (bool): Whether to save predict results.
|
|
save_path (str): File path for saving results, only valid when `save_results` is True.
|
|
pipelines (list[dict]): Data pipeline configs.
|
|
topk (int): Return top-k results. Default: 1.
|
|
pil_input (bool): Whether use PIL image. If processor need PIL input, set true, default false.
|
|
label_map_path (str): File path of saving labels list.
|
|
input_processor_threads (int): Number of processes to process inputs.
|
|
mode (str): The image mode into the model.
|
|
"""
|
|
|
|
def __init__(self,
|
|
model_path,
|
|
config_file=None,
|
|
batch_size=1,
|
|
device=None,
|
|
save_results=False,
|
|
save_path=None,
|
|
pipelines=None,
|
|
topk=1,
|
|
pil_input=True,
|
|
label_map_path=None,
|
|
input_processor_threads=8,
|
|
mode='BGR',
|
|
*args,
|
|
**kwargs):
|
|
self.topk = topk
|
|
self.pil_input = pil_input
|
|
self.label_map_path = label_map_path
|
|
|
|
if self.pil_input:
|
|
mode = 'RGB'
|
|
super(ClassificationPredictor, self).__init__(
|
|
model_path,
|
|
config_file=config_file,
|
|
batch_size=batch_size,
|
|
device=device,
|
|
save_results=save_results,
|
|
save_path=save_path,
|
|
pipelines=pipelines,
|
|
input_processor_threads=input_processor_threads,
|
|
mode=mode,
|
|
*args,
|
|
**kwargs)
|
|
|
|
def get_input_processor(self):
|
|
return ClsInputProcessor(
|
|
self.cfg,
|
|
pipelines=self.pipelines,
|
|
batch_size=self.batch_size,
|
|
threads=self.input_processor_threads,
|
|
pil_input=self.pil_input,
|
|
mode=self.mode)
|
|
|
|
def get_output_processor(self):
|
|
# Adapt to torchvision transforms which process PIL inputs.
|
|
if self.label_map_path is None:
|
|
if 'CLASSES' in self.cfg:
|
|
class_list = self.cfg.get('CLASSES', [])
|
|
elif 'class_list' in self.cfg:
|
|
class_list = self.cfg.get('class_list', [])
|
|
else:
|
|
class_list = []
|
|
else:
|
|
with io.open(self.label_map_path, 'r') as f:
|
|
class_list = f.readlines()
|
|
self.label_map = [i.strip() for i in class_list]
|
|
|
|
return ClsOutputProcessor(topk=self.topk, label_map=self.label_map)
|
|
|
|
|
|
try:
|
|
from easy_vision.python.inference.predictor import PredictorInterface
|
|
except:
|
|
from .interface import PredictorInterface
|
|
|
|
|
|
@deprecated(reason='Please use ClassificationPredictor.')
|
|
@PREDICTORS.register_module()
|
|
class TorchClassifier(PredictorInterface):
|
|
|
|
def __init__(self,
|
|
model_path,
|
|
model_config=None,
|
|
topk=1,
|
|
label_map_path=None):
|
|
"""
|
|
init model
|
|
|
|
Args:
|
|
model_path: model file path
|
|
model_config: config string for model to init, in json format
|
|
"""
|
|
self.predictor = Predictor(model_path)
|
|
if 'class_list' not in self.predictor.cfg and \
|
|
'CLASSES' not in self.predictor.cfg and \
|
|
label_map_path is None:
|
|
raise ValueError(
|
|
"'label_map_path' need to be set, when ckpt doesn't contain key 'class_list' and 'CLASSES'!"
|
|
)
|
|
|
|
if label_map_path is None:
|
|
class_list = self.predictor.cfg.get('class_list', [])
|
|
if len(class_list) < 1:
|
|
class_list = self.predictor.cfg.get('CLASSES', [])
|
|
self.label_map = [i.strip() for i in class_list]
|
|
else:
|
|
class_list = open(label_map_path).readlines()
|
|
self.label_map = [i.strip() for i in class_list]
|
|
self.output_name = ['prob', 'class']
|
|
self.topk = topk if topk < len(class_list) else len(class_list)
|
|
|
|
def get_output_type(self):
|
|
"""
|
|
in this function user should return a type dict, which indicates
|
|
which type of data should the output of predictor be converted to
|
|
* type json, data will be serialized to json str
|
|
|
|
* type image, data will be converted to encode image binary and write to oss file,
|
|
whose name is output_dir/${key}/${input_filename}_${idx}.jpg, where input_filename
|
|
is the base filename extracted from url, key corresponds to the key in the dict of output_type,
|
|
if the type of data indexed by key is a list, idx is the index of element in list, otherwhile ${idx} will be empty
|
|
|
|
* type video, data will be converted to encode video binary and write to oss file,
|
|
|
|
:: return {
|
|
'image': 'image',
|
|
'feature': 'json'
|
|
}
|
|
|
|
indicating that the image data in the output dict will be save to image
|
|
file and feature in output dict will be converted to json
|
|
|
|
"""
|
|
return {}
|
|
|
|
def batch(self, image_tensor_list):
|
|
return torch.stack(image_tensor_list)
|
|
|
|
def predict(self, input_data_list, batch_size=-1):
|
|
"""
|
|
using session run predict a number of samples using batch_size
|
|
|
|
Args:
|
|
input_data_list: a list of numpy array, each array is a sample to be predicted
|
|
batch_size: batch_size passed by the caller, you can also ignore this param and
|
|
use a fixed number if you do not want to adjust batch_size in runtime
|
|
Return:
|
|
result: a list of dict, each dict is the prediction result of one sample
|
|
eg, {"output1": value1, "output2": value2}, the value type can be
|
|
python int str float, and numpy array
|
|
"""
|
|
num_image = len(input_data_list)
|
|
assert len(
|
|
input_data_list) > 0, 'input images should not be an empty list'
|
|
if batch_size > 0:
|
|
num_batches = int(math.ceil(float(num_image) / batch_size))
|
|
image_list = input_data_list
|
|
else:
|
|
num_batches = 1
|
|
batch_size = len(input_data_list)
|
|
image_list = input_data_list
|
|
|
|
outputs_list = []
|
|
for batch_idx in range(num_batches):
|
|
batch_image_list = image_list[batch_idx * batch_size:min(
|
|
(batch_idx + 1) * batch_size, len(image_list))]
|
|
image_tensor_list = self.predictor.preprocess(batch_image_list)
|
|
input_data = self.batch(image_tensor_list)
|
|
output_prob = self.predictor.predict_batch(
|
|
input_data, mode='test')['prob'].data.cpu()
|
|
|
|
topk_prob = torch.topk(output_prob, self.topk).values.numpy()
|
|
topk_class = torch.topk(output_prob, self.topk).indices.numpy()
|
|
output_prob = output_prob.numpy()
|
|
|
|
for idx in range(len(image_tensor_list)):
|
|
single_result = {}
|
|
single_result['class'] = np.squeeze(topk_class[idx]).tolist()
|
|
if isinstance(single_result['class'], int):
|
|
single_result['class'] = [single_result['class']]
|
|
single_result['class_name'] = [
|
|
self.label_map[i] for i in single_result['class']
|
|
]
|
|
single_result['class_probs'] = {}
|
|
for ldx, i in enumerate(self.label_map):
|
|
single_result['class_probs'][i] = output_prob[idx][ldx]
|
|
|
|
outputs_list.append(single_result)
|
|
|
|
return outputs_list
|