yhq 513e0d060a
remove unused dependency (#204)
* remove unused dependency
2022-09-30 11:26:36 +08:00

347 lines
10 KiB
Python

# Modified from https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.6/ppocr/modeling/necks/db_fpn.py
import torch
import torch.nn as nn
import torch.nn.functional as F
from easycv.models.registry import NECKS
from ..backbones.det_mobilenet_v3 import SEModule
def hard_swish(x, inplace=True):
return x * F.relu6(x + 3., inplace=inplace) / 6.
class DSConv(nn.Module):
def __init__(self,
in_channels,
out_channels,
kernel_size,
padding,
stride=1,
groups=None,
if_act=True,
act='relu',
**kwargs):
super(DSConv, self).__init__()
if groups == None:
groups = in_channels
self.if_act = if_act
self.act = act
self.conv1 = nn.Conv2d(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
bias=False)
self.bn1 = nn.BatchNorm2d(in_channels)
self.conv2 = nn.Conv2d(
in_channels=in_channels,
out_channels=int(in_channels * 4),
kernel_size=1,
stride=1,
bias=False)
self.bn2 = nn.BatchNorm2d(int(in_channels * 4))
self.conv3 = nn.Conv2d(
in_channels=int(in_channels * 4),
out_channels=out_channels,
kernel_size=1,
stride=1,
bias=False)
self._c = [in_channels, out_channels]
if in_channels != out_channels:
self.conv_end = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
bias=False)
def forward(self, inputs):
x = self.conv1(inputs)
x = self.bn1(x)
x = self.conv2(x)
x = self.bn2(x)
if self.if_act:
if self.act == 'relu':
x = F.relu(x)
elif self.act == 'hardswish':
x = hard_swish(x)
else:
print('The activation function({}) is selected incorrectly.'.
format(self.act))
exit()
x = self.conv3(x)
if self._c[0] != self._c[1]:
x = x + self.conv_end(inputs)
return x
@NECKS.register_module()
class DBFPN(nn.Module):
def __init__(self, in_channels, out_channels, **kwargs):
super(DBFPN, self).__init__()
self.out_channels = out_channels
self.in2_conv = nn.Conv2d(
in_channels=in_channels[0],
out_channels=self.out_channels,
kernel_size=1,
bias=False)
self.in3_conv = nn.Conv2d(
in_channels=in_channels[1],
out_channels=self.out_channels,
kernel_size=1,
bias=False)
self.in4_conv = nn.Conv2d(
in_channels=in_channels[2],
out_channels=self.out_channels,
kernel_size=1,
bias=False)
self.in5_conv = nn.Conv2d(
in_channels=in_channels[3],
out_channels=self.out_channels,
kernel_size=1,
bias=False)
self.p5_conv = nn.Conv2d(
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
bias=False)
self.p4_conv = nn.Conv2d(
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
bias=False)
self.p3_conv = nn.Conv2d(
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
bias=False)
self.p2_conv = nn.Conv2d(
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
bias=False)
def forward(self, x):
c2, c3, c4, c5 = x
in5 = self.in5_conv(c5)
in4 = self.in4_conv(c4)
in3 = self.in3_conv(c3)
in2 = self.in2_conv(c2)
out4 = in4 + F.interpolate(
in5,
scale_factor=2,
mode='nearest',
)
out3 = in3 + F.interpolate(
out4,
scale_factor=2,
mode='nearest',
)
out2 = in2 + F.interpolate(
out3,
scale_factor=2,
mode='nearest',
)
p5 = self.p5_conv(in5)
p4 = self.p4_conv(out4)
p3 = self.p3_conv(out3)
p2 = self.p2_conv(out2)
p5 = F.interpolate(
p5,
scale_factor=8,
mode='nearest',
)
p4 = F.interpolate(
p4,
scale_factor=4,
mode='nearest',
)
p3 = F.interpolate(
p3,
scale_factor=2,
mode='nearest',
)
fuse = torch.cat([p5, p4, p3, p2], dim=1)
return fuse
class RSELayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, shortcut=True):
super(RSELayer, self).__init__()
self.out_channels = out_channels
self.in_conv = nn.Conv2d(
in_channels=in_channels,
out_channels=self.out_channels,
kernel_size=kernel_size,
padding=int(kernel_size // 2),
bias=False)
self.se_block = SEModule(self.out_channels)
self.shortcut = shortcut
def forward(self, ins):
x = self.in_conv(ins)
if self.shortcut:
out = x + self.se_block(x)
else:
out = self.se_block(x)
return out
@NECKS.register_module()
class RSEFPN(nn.Module):
def __init__(self, in_channels, out_channels, shortcut=True, **kwargs):
super(RSEFPN, self).__init__()
self.out_channels = out_channels
self.ins_conv = nn.ModuleList()
self.inp_conv = nn.ModuleList()
for i in range(len(in_channels)):
self.ins_conv.append(
RSELayer(
in_channels[i],
out_channels,
kernel_size=1,
shortcut=shortcut))
self.inp_conv.append(
RSELayer(
out_channels,
out_channels // 4,
kernel_size=3,
shortcut=shortcut))
def forward(self, x):
c2, c3, c4, c5 = x
in5 = self.ins_conv[3](c5)
in4 = self.ins_conv[2](c4)
in3 = self.ins_conv[1](c3)
in2 = self.ins_conv[0](c2)
out4 = in4 + F.upsample(in5, scale_factor=2, mode='nearest') # 1/16
out3 = in3 + F.upsample(out4, scale_factor=2, mode='nearest') # 1/8
out2 = in2 + F.upsample(out3, scale_factor=2, mode='nearest') # 1/4
p5 = self.inp_conv[3](in5)
p4 = self.inp_conv[2](out4)
p3 = self.inp_conv[1](out3)
p2 = self.inp_conv[0](out2)
p5 = F.upsample(p5, scale_factor=8, mode='nearest')
p4 = F.upsample(p4, scale_factor=4, mode='nearest')
p3 = F.upsample(p3, scale_factor=2, mode='nearest')
fuse = torch.cat([p5, p4, p3, p2], dim=1)
return fuse
@NECKS.register_module()
class LKPAN(nn.Module):
def __init__(self, in_channels, out_channels, mode='large', **kwargs):
super(LKPAN, self).__init__()
self.out_channels = out_channels
self.ins_conv = nn.ModuleList()
self.inp_conv = nn.ModuleList()
# pan head
self.pan_head_conv = nn.ModuleList()
self.pan_lat_conv = nn.ModuleList()
if mode.lower() == 'lite':
p_layer = DSConv
elif mode.lower() == 'large':
p_layer = nn.Conv2d
else:
raise ValueError(
"mode can only be one of ['lite', 'large'], but received {}".
format(mode))
for i in range(len(in_channels)):
self.ins_conv.append(
nn.Conv2d(
in_channels=in_channels[i],
out_channels=self.out_channels,
kernel_size=1,
bias=False))
self.inp_conv.append(
p_layer(
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=9,
padding=4,
bias=False))
if i > 0:
self.pan_head_conv.append(
nn.Conv2d(
in_channels=self.out_channels // 4,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
stride=2,
bias=False))
self.pan_lat_conv.append(
p_layer(
in_channels=self.out_channels // 4,
out_channels=self.out_channels // 4,
kernel_size=9,
padding=4,
bias=False))
def forward(self, x):
c2, c3, c4, c5 = x
in5 = self.ins_conv[3](c5)
in4 = self.ins_conv[2](c4)
in3 = self.ins_conv[1](c3)
in2 = self.ins_conv[0](c2)
out4 = in4 + F.upsample(in5, scale_factor=2, mode='nearest') # 1/16
out3 = in3 + F.upsample(out4, scale_factor=2, mode='nearest') # 1/8
out2 = in2 + F.upsample(out3, scale_factor=2, mode='nearest') # 1/4
f5 = self.inp_conv[3](in5)
f4 = self.inp_conv[2](out4)
f3 = self.inp_conv[1](out3)
f2 = self.inp_conv[0](out2)
pan3 = f3 + self.pan_head_conv[0](f2)
pan4 = f4 + self.pan_head_conv[1](pan3)
pan5 = f5 + self.pan_head_conv[2](pan4)
p2 = self.pan_lat_conv[0](f2)
p3 = self.pan_lat_conv[1](pan3)
p4 = self.pan_lat_conv[2](pan4)
p5 = self.pan_lat_conv[3](pan5)
p5 = F.upsample(p5, scale_factor=8, mode='nearest')
p4 = F.upsample(p4, scale_factor=4, mode='nearest')
p3 = F.upsample(p3, scale_factor=2, mode='nearest')
fuse = torch.cat([p5, p4, p3, p2], dim=1)
return fuse