mirror of
https://github.com/alibaba/EasyCV.git
synced 2025-06-03 14:49:00 +08:00
347 lines
10 KiB
Python
347 lines
10 KiB
Python
# Modified from https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.6/ppocr/modeling/necks/db_fpn.py
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from easycv.models.registry import NECKS
|
|
from ..backbones.det_mobilenet_v3 import SEModule
|
|
|
|
|
|
def hard_swish(x, inplace=True):
|
|
return x * F.relu6(x + 3., inplace=inplace) / 6.
|
|
|
|
|
|
class DSConv(nn.Module):
|
|
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
padding,
|
|
stride=1,
|
|
groups=None,
|
|
if_act=True,
|
|
act='relu',
|
|
**kwargs):
|
|
super(DSConv, self).__init__()
|
|
if groups == None:
|
|
groups = in_channels
|
|
self.if_act = if_act
|
|
self.act = act
|
|
self.conv1 = nn.Conv2d(
|
|
in_channels=in_channels,
|
|
out_channels=in_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
groups=groups,
|
|
bias=False)
|
|
|
|
self.bn1 = nn.BatchNorm2d(in_channels)
|
|
|
|
self.conv2 = nn.Conv2d(
|
|
in_channels=in_channels,
|
|
out_channels=int(in_channels * 4),
|
|
kernel_size=1,
|
|
stride=1,
|
|
bias=False)
|
|
|
|
self.bn2 = nn.BatchNorm2d(int(in_channels * 4))
|
|
|
|
self.conv3 = nn.Conv2d(
|
|
in_channels=int(in_channels * 4),
|
|
out_channels=out_channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
bias=False)
|
|
self._c = [in_channels, out_channels]
|
|
if in_channels != out_channels:
|
|
self.conv_end = nn.Conv2d(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
bias=False)
|
|
|
|
def forward(self, inputs):
|
|
|
|
x = self.conv1(inputs)
|
|
x = self.bn1(x)
|
|
|
|
x = self.conv2(x)
|
|
x = self.bn2(x)
|
|
if self.if_act:
|
|
if self.act == 'relu':
|
|
x = F.relu(x)
|
|
elif self.act == 'hardswish':
|
|
x = hard_swish(x)
|
|
else:
|
|
print('The activation function({}) is selected incorrectly.'.
|
|
format(self.act))
|
|
exit()
|
|
|
|
x = self.conv3(x)
|
|
if self._c[0] != self._c[1]:
|
|
x = x + self.conv_end(inputs)
|
|
return x
|
|
|
|
|
|
@NECKS.register_module()
|
|
class DBFPN(nn.Module):
|
|
|
|
def __init__(self, in_channels, out_channels, **kwargs):
|
|
super(DBFPN, self).__init__()
|
|
self.out_channels = out_channels
|
|
|
|
self.in2_conv = nn.Conv2d(
|
|
in_channels=in_channels[0],
|
|
out_channels=self.out_channels,
|
|
kernel_size=1,
|
|
bias=False)
|
|
self.in3_conv = nn.Conv2d(
|
|
in_channels=in_channels[1],
|
|
out_channels=self.out_channels,
|
|
kernel_size=1,
|
|
bias=False)
|
|
self.in4_conv = nn.Conv2d(
|
|
in_channels=in_channels[2],
|
|
out_channels=self.out_channels,
|
|
kernel_size=1,
|
|
bias=False)
|
|
self.in5_conv = nn.Conv2d(
|
|
in_channels=in_channels[3],
|
|
out_channels=self.out_channels,
|
|
kernel_size=1,
|
|
bias=False)
|
|
self.p5_conv = nn.Conv2d(
|
|
in_channels=self.out_channels,
|
|
out_channels=self.out_channels // 4,
|
|
kernel_size=3,
|
|
padding=1,
|
|
bias=False)
|
|
self.p4_conv = nn.Conv2d(
|
|
in_channels=self.out_channels,
|
|
out_channels=self.out_channels // 4,
|
|
kernel_size=3,
|
|
padding=1,
|
|
bias=False)
|
|
self.p3_conv = nn.Conv2d(
|
|
in_channels=self.out_channels,
|
|
out_channels=self.out_channels // 4,
|
|
kernel_size=3,
|
|
padding=1,
|
|
bias=False)
|
|
self.p2_conv = nn.Conv2d(
|
|
in_channels=self.out_channels,
|
|
out_channels=self.out_channels // 4,
|
|
kernel_size=3,
|
|
padding=1,
|
|
bias=False)
|
|
|
|
def forward(self, x):
|
|
c2, c3, c4, c5 = x
|
|
|
|
in5 = self.in5_conv(c5)
|
|
in4 = self.in4_conv(c4)
|
|
in3 = self.in3_conv(c3)
|
|
in2 = self.in2_conv(c2)
|
|
|
|
out4 = in4 + F.interpolate(
|
|
in5,
|
|
scale_factor=2,
|
|
mode='nearest',
|
|
)
|
|
out3 = in3 + F.interpolate(
|
|
out4,
|
|
scale_factor=2,
|
|
mode='nearest',
|
|
)
|
|
out2 = in2 + F.interpolate(
|
|
out3,
|
|
scale_factor=2,
|
|
mode='nearest',
|
|
)
|
|
|
|
p5 = self.p5_conv(in5)
|
|
p4 = self.p4_conv(out4)
|
|
p3 = self.p3_conv(out3)
|
|
p2 = self.p2_conv(out2)
|
|
p5 = F.interpolate(
|
|
p5,
|
|
scale_factor=8,
|
|
mode='nearest',
|
|
)
|
|
p4 = F.interpolate(
|
|
p4,
|
|
scale_factor=4,
|
|
mode='nearest',
|
|
)
|
|
p3 = F.interpolate(
|
|
p3,
|
|
scale_factor=2,
|
|
mode='nearest',
|
|
)
|
|
|
|
fuse = torch.cat([p5, p4, p3, p2], dim=1)
|
|
return fuse
|
|
|
|
|
|
class RSELayer(nn.Module):
|
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, shortcut=True):
|
|
super(RSELayer, self).__init__()
|
|
self.out_channels = out_channels
|
|
self.in_conv = nn.Conv2d(
|
|
in_channels=in_channels,
|
|
out_channels=self.out_channels,
|
|
kernel_size=kernel_size,
|
|
padding=int(kernel_size // 2),
|
|
bias=False)
|
|
self.se_block = SEModule(self.out_channels)
|
|
self.shortcut = shortcut
|
|
|
|
def forward(self, ins):
|
|
x = self.in_conv(ins)
|
|
if self.shortcut:
|
|
out = x + self.se_block(x)
|
|
else:
|
|
out = self.se_block(x)
|
|
return out
|
|
|
|
|
|
@NECKS.register_module()
|
|
class RSEFPN(nn.Module):
|
|
|
|
def __init__(self, in_channels, out_channels, shortcut=True, **kwargs):
|
|
super(RSEFPN, self).__init__()
|
|
self.out_channels = out_channels
|
|
self.ins_conv = nn.ModuleList()
|
|
self.inp_conv = nn.ModuleList()
|
|
|
|
for i in range(len(in_channels)):
|
|
self.ins_conv.append(
|
|
RSELayer(
|
|
in_channels[i],
|
|
out_channels,
|
|
kernel_size=1,
|
|
shortcut=shortcut))
|
|
self.inp_conv.append(
|
|
RSELayer(
|
|
out_channels,
|
|
out_channels // 4,
|
|
kernel_size=3,
|
|
shortcut=shortcut))
|
|
|
|
def forward(self, x):
|
|
c2, c3, c4, c5 = x
|
|
|
|
in5 = self.ins_conv[3](c5)
|
|
in4 = self.ins_conv[2](c4)
|
|
in3 = self.ins_conv[1](c3)
|
|
in2 = self.ins_conv[0](c2)
|
|
|
|
out4 = in4 + F.upsample(in5, scale_factor=2, mode='nearest') # 1/16
|
|
out3 = in3 + F.upsample(out4, scale_factor=2, mode='nearest') # 1/8
|
|
out2 = in2 + F.upsample(out3, scale_factor=2, mode='nearest') # 1/4
|
|
|
|
p5 = self.inp_conv[3](in5)
|
|
p4 = self.inp_conv[2](out4)
|
|
p3 = self.inp_conv[1](out3)
|
|
p2 = self.inp_conv[0](out2)
|
|
|
|
p5 = F.upsample(p5, scale_factor=8, mode='nearest')
|
|
p4 = F.upsample(p4, scale_factor=4, mode='nearest')
|
|
p3 = F.upsample(p3, scale_factor=2, mode='nearest')
|
|
|
|
fuse = torch.cat([p5, p4, p3, p2], dim=1)
|
|
return fuse
|
|
|
|
|
|
@NECKS.register_module()
|
|
class LKPAN(nn.Module):
|
|
|
|
def __init__(self, in_channels, out_channels, mode='large', **kwargs):
|
|
super(LKPAN, self).__init__()
|
|
self.out_channels = out_channels
|
|
|
|
self.ins_conv = nn.ModuleList()
|
|
self.inp_conv = nn.ModuleList()
|
|
# pan head
|
|
self.pan_head_conv = nn.ModuleList()
|
|
self.pan_lat_conv = nn.ModuleList()
|
|
|
|
if mode.lower() == 'lite':
|
|
p_layer = DSConv
|
|
elif mode.lower() == 'large':
|
|
p_layer = nn.Conv2d
|
|
else:
|
|
raise ValueError(
|
|
"mode can only be one of ['lite', 'large'], but received {}".
|
|
format(mode))
|
|
|
|
for i in range(len(in_channels)):
|
|
self.ins_conv.append(
|
|
nn.Conv2d(
|
|
in_channels=in_channels[i],
|
|
out_channels=self.out_channels,
|
|
kernel_size=1,
|
|
bias=False))
|
|
|
|
self.inp_conv.append(
|
|
p_layer(
|
|
in_channels=self.out_channels,
|
|
out_channels=self.out_channels // 4,
|
|
kernel_size=9,
|
|
padding=4,
|
|
bias=False))
|
|
|
|
if i > 0:
|
|
self.pan_head_conv.append(
|
|
nn.Conv2d(
|
|
in_channels=self.out_channels // 4,
|
|
out_channels=self.out_channels // 4,
|
|
kernel_size=3,
|
|
padding=1,
|
|
stride=2,
|
|
bias=False))
|
|
self.pan_lat_conv.append(
|
|
p_layer(
|
|
in_channels=self.out_channels // 4,
|
|
out_channels=self.out_channels // 4,
|
|
kernel_size=9,
|
|
padding=4,
|
|
bias=False))
|
|
|
|
def forward(self, x):
|
|
c2, c3, c4, c5 = x
|
|
|
|
in5 = self.ins_conv[3](c5)
|
|
in4 = self.ins_conv[2](c4)
|
|
in3 = self.ins_conv[1](c3)
|
|
in2 = self.ins_conv[0](c2)
|
|
|
|
out4 = in4 + F.upsample(in5, scale_factor=2, mode='nearest') # 1/16
|
|
out3 = in3 + F.upsample(out4, scale_factor=2, mode='nearest') # 1/8
|
|
out2 = in2 + F.upsample(out3, scale_factor=2, mode='nearest') # 1/4
|
|
|
|
f5 = self.inp_conv[3](in5)
|
|
f4 = self.inp_conv[2](out4)
|
|
f3 = self.inp_conv[1](out3)
|
|
f2 = self.inp_conv[0](out2)
|
|
|
|
pan3 = f3 + self.pan_head_conv[0](f2)
|
|
pan4 = f4 + self.pan_head_conv[1](pan3)
|
|
pan5 = f5 + self.pan_head_conv[2](pan4)
|
|
|
|
p2 = self.pan_lat_conv[0](f2)
|
|
p3 = self.pan_lat_conv[1](pan3)
|
|
p4 = self.pan_lat_conv[2](pan4)
|
|
p5 = self.pan_lat_conv[3](pan5)
|
|
|
|
p5 = F.upsample(p5, scale_factor=8, mode='nearest')
|
|
p4 = F.upsample(p4, scale_factor=4, mode='nearest')
|
|
p3 = F.upsample(p3, scale_factor=2, mode='nearest')
|
|
|
|
fuse = torch.cat([p5, p4, p3, p2], dim=1)
|
|
return fuse
|