mirror of https://github.com/alibaba/EasyCV.git
258 lines
8.8 KiB
Python
258 lines
8.8 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
"""
|
|
isort:skip_file
|
|
"""
|
|
import argparse
|
|
import os
|
|
import os.path as osp
|
|
import sys
|
|
import time
|
|
|
|
import requests
|
|
import torch
|
|
try:
|
|
from blade_compression.fx_quantization.prepare import (convert,
|
|
enable_calibration,
|
|
prepare_fx)
|
|
except ImportError:
|
|
raise ImportError(
|
|
'Please read docs and run "pip install http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/third_party/blade_compression-0.0.1-py3-none-any.whl" '
|
|
'to install blade_compression')
|
|
|
|
from mmcv.parallel import MMDataParallel
|
|
from mmcv.runner import get_dist_info
|
|
|
|
from easycv.models import build_model
|
|
from easycv.apis import single_cpu_test, single_gpu_test
|
|
from easycv.core.evaluation.builder import build_evaluator
|
|
from easycv.datasets import build_dataloader, build_dataset
|
|
from easycv.utils.logger import get_root_logger
|
|
from easycv.utils.flops_counter import get_model_info
|
|
from easycv.file import io
|
|
from easycv.toolkit.quantize.quantize_utils import calib, quantize_config_check
|
|
from easycv.utils.checkpoint import load_checkpoint
|
|
from easycv.utils.config_tools import (CONFIG_TEMPLATE_ZOO,
|
|
mmcv_config_fromfile, rebuild_config)
|
|
|
|
sys.path.append(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
|
|
sys.path.append(
|
|
os.path.abspath(
|
|
osp.join(os.path.dirname(os.path.dirname(__file__)), '../')))
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='EasyCV quantize a model')
|
|
parser.add_argument('config', help='model config file path')
|
|
parser.add_argument('checkpoint', help='checkpoint file')
|
|
parser.add_argument(
|
|
'--work_dir',
|
|
type=str,
|
|
default=None,
|
|
help='the dir to save quantized models')
|
|
parser.add_argument(
|
|
'--model_type',
|
|
type=str,
|
|
default=None,
|
|
help=
|
|
'parameterize param when user specific choose a model config template like CLASSIFICATION: classification.py'
|
|
)
|
|
parser.add_argument('--local_rank', type=int, default=0)
|
|
parser.add_argument(
|
|
'--device',
|
|
type=str,
|
|
default='cpu',
|
|
help='the device quantized models use')
|
|
parser.add_argument(
|
|
'--backend',
|
|
type=str,
|
|
default='PyTorch',
|
|
help="the quantized models's framework")
|
|
parser.add_argument(
|
|
'--user_config_params',
|
|
nargs=argparse.REMAINDER,
|
|
default=None,
|
|
help='modify config options using the command-line')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def quantize_eval(cfg, model, eval_mode):
|
|
for eval_pipe in cfg.eval_pipelines:
|
|
eval_data = eval_pipe.data
|
|
# build the dataloader
|
|
imgs_per_gpu = eval_data.pop('imgs_per_gpu', cfg.data.imgs_per_gpu)
|
|
|
|
dataset = build_dataset(eval_data)
|
|
data_loader = build_dataloader(
|
|
dataset,
|
|
imgs_per_gpu=imgs_per_gpu,
|
|
workers_per_gpu=cfg.data.workers_per_gpu,
|
|
dist=False,
|
|
shuffle=False)
|
|
|
|
if eval_mode == 'cuda':
|
|
outputs = single_gpu_test(model, data_loader, mode=eval_pipe.mode)
|
|
elif eval_mode == 'cpu':
|
|
outputs = single_cpu_test(model, data_loader, mode=eval_pipe.mode)
|
|
|
|
rank, _ = get_dist_info()
|
|
if rank == 0:
|
|
for t in eval_pipe.evaluators:
|
|
if 'metric_type' in t:
|
|
t.pop('metric_type')
|
|
evaluators = build_evaluator(eval_pipe.evaluators)
|
|
eval_result = dataset.evaluate(outputs, evaluators=evaluators)
|
|
print(f'\n eval_result {eval_result}')
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
if args.model_type is not None and args.config is None:
|
|
assert args.model_type in CONFIG_TEMPLATE_ZOO, 'model_type must be in [%s]' % (
|
|
', '.join(CONFIG_TEMPLATE_ZOO.keys()))
|
|
print('model_type=%s, config file will be replaced by %s' %
|
|
(args.model_type, CONFIG_TEMPLATE_ZOO[args.model_type]))
|
|
args.config = CONFIG_TEMPLATE_ZOO[args.model_type]
|
|
|
|
if args.config.startswith('http'):
|
|
|
|
r = requests.get(args.config)
|
|
# download config in current dir
|
|
tpath = args.config.split('/')[-1]
|
|
while not osp.exists(tpath):
|
|
try:
|
|
with open(tpath, 'wb') as code:
|
|
code.write(r.content)
|
|
except:
|
|
pass
|
|
|
|
args.config = tpath
|
|
|
|
cfg = mmcv_config_fromfile(args.config)
|
|
|
|
if args.user_config_params is not None:
|
|
assert args.model_type is not None, 'model_type must be setted'
|
|
# rebuild config by user config params
|
|
cfg = rebuild_config(cfg, args.user_config_params)
|
|
|
|
# check oss_config and init oss io
|
|
if cfg.get('oss_io_config', None) is not None:
|
|
io.access_oss(**cfg.oss_io_config)
|
|
|
|
# set cudnn_benchmark
|
|
if cfg.get('cudnn_benchmark', False):
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
# update configs according to CLI args
|
|
if args.work_dir is not None:
|
|
cfg.work_dir = args.work_dir
|
|
|
|
# if `work_dir` is oss path, redirect `work_dir` to local path, add `oss_work_dir` point to oss path,
|
|
# and use osssync hook to upload log and ckpt in work_dir to oss_work_dir
|
|
if cfg.work_dir.startswith('oss://'):
|
|
cfg.oss_work_dir = cfg.work_dir
|
|
cfg.work_dir = osp.join('work_dirs',
|
|
cfg.work_dir.replace('oss://', ''))
|
|
else:
|
|
cfg.oss_work_dir = None
|
|
|
|
# create work_dir
|
|
if not io.exists(cfg.work_dir):
|
|
io.makedirs(cfg.work_dir)
|
|
|
|
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
|
|
log_file = osp.join(cfg.work_dir, '{}.log'.format(timestamp))
|
|
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
|
|
|
|
cfg.model.pretrained = None
|
|
if cfg.model.get('neck'):
|
|
if type(cfg.model.neck) is list:
|
|
pass
|
|
else:
|
|
if cfg.model.neck.get('rfp_backbone'):
|
|
if cfg.model.neck.rfp_backbone.get('pretrained'):
|
|
cfg.model.neck.rfp_backbone.pretrained = None
|
|
|
|
# build the model and load checkpoint
|
|
model = build_model(cfg.model)
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
logger.info(f'use device {device}')
|
|
checkpoint = load_checkpoint(model, args.checkpoint, map_location=device)
|
|
model.eval()
|
|
model.to(device)
|
|
# old versions did not save class info in checkpoints, this walkaround is
|
|
# for backward compatibility
|
|
if 'meta' in checkpoint and 'CLASSES' in checkpoint['meta']:
|
|
model.CLASSES = checkpoint['meta']['CLASSES']
|
|
elif hasattr(cfg, 'CLASSES'):
|
|
model.CLASSES = cfg.CLASSES
|
|
|
|
# MMDataParallel for gpu
|
|
if device == 'cuda':
|
|
base_model = MMDataParallel(model, device_ids=[0])
|
|
else:
|
|
base_model = model
|
|
|
|
# eval base model before quantizing
|
|
get_model_info(model, cfg.img_scale, cfg.model, logger)
|
|
quantize_eval(cfg, base_model, device)
|
|
|
|
# setting quantize config
|
|
quantize_config = quantize_config_check(args.device, args.backend,
|
|
args.model_type)
|
|
|
|
model.to('cuda')
|
|
prepared_backbone = prepare_fx(model.backbone.eval(), quantize_config)
|
|
enable_calibration(prepared_backbone)
|
|
# build calib dataloader, only need 50 samples
|
|
logger.info('build calib dataloader')
|
|
eval_data = cfg.eval_pipelines[0].data
|
|
imgs_per_gpu = eval_data.pop('imgs_per_gpu', cfg.data.imgs_per_gpu)
|
|
|
|
dataset = build_dataset(eval_data)
|
|
data_loader = build_dataloader(
|
|
dataset,
|
|
imgs_per_gpu=imgs_per_gpu,
|
|
workers_per_gpu=cfg.data.workers_per_gpu,
|
|
dist=False,
|
|
shuffle=False)
|
|
|
|
# guarantee accuracy
|
|
logger.info('guarantee calib')
|
|
calib(prepared_backbone, data_loader)
|
|
|
|
# quantized model on cpu
|
|
model.to('cpu')
|
|
|
|
# quantizing model
|
|
logger.info('convert model')
|
|
quantized_backbone, _ = convert(prepared_backbone, quantize_config)
|
|
model.backbone = quantized_backbone
|
|
model.eval()
|
|
|
|
# cpu eval
|
|
logger.info('quantized model eval')
|
|
get_model_info(model, cfg.img_scale, cfg.model, logger)
|
|
quantize_eval(cfg, model, 'cpu')
|
|
|
|
input_shape = (1, 3, cfg.img_scale[0], cfg.img_scale[1])
|
|
model.head.decode_in_inference = False
|
|
dummy = torch.randn(input_shape)
|
|
traced_model = torch.jit.trace(model, dummy)
|
|
model_path = osp.join(cfg.work_dir, 'quantize_model.pt')
|
|
torch.jit.save(traced_model, model_path)
|
|
|
|
if cfg.oss_work_dir is not None:
|
|
export_oss_path = os.path.join(cfg.oss_work_dir, 'quantize_model.pt')
|
|
if not os.path.exists(model_path):
|
|
logger.warning(f'{model_path} does not exists, skip upload')
|
|
else:
|
|
logger.info(f'upload {model_path} to {export_oss_path}')
|
|
io.safe_copy(model_path, export_oss_path)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|