EasyCV/easycv/core/evaluation/mse_eval.py

64 lines
1.8 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import torch
from .base_evaluator import Evaluator
from .builder import EVALUATORS
from .metric_registry import METRICS
@EVALUATORS.register_module
class MSEEvaluator(Evaluator):
""" MSEEvaluator evaluator,
"""
def __init__(self,
dataset_name=None,
metric_names=['avg_mse'],
neck_num=None):
'''
'''
self.metric = 'min'
self.dataset_name = dataset_name
self.neck_num = neck_num
super(MSEEvaluator, self).__init__(dataset_name, metric_names)
def _evaluate_impl(self, results, gt_label):
""" Retrival evaluate do the topK retrival, by measuring the distance of every 1 vs other.
get the topK nearest, and count the match of ID. if Retrival = 1, Miss = 0. Finally average all
RetrivalRate.
"""
# first print() is to show shape clearly in multi-process situation. don't comment it
print()
if self.neck_num is None:
try:
results = results.cuda()
except:
results = results['neck'].cuda()
else:
results = results['neck_%d_0' % self.neck_num].cuda()
gt_label = gt_label.cuda()
# print(results.shape)
# print(gt_label.shape)
if results.shape[1] > 1:
n, c = results.size()
prob = torch.nn.Softmax(dim=1)(results)
distribute = torch.arange(0, c).repeat(n, 1).to(results.device)
results = (distribute * prob).sum(dim=1)
eval_res = {}
avg_mse = torch.mean(torch.abs(results - gt_label))
eval_res['avg_mse'] = avg_mse.item()
return eval_res
METRICS.register_default_best_metric(MSEEvaluator, 'avg_mse', 'max')