2022-04-02 20:01:06 +08:00

262 lines
8.6 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import logging
import os
import time
import xml.etree.ElementTree as ET
from multiprocessing import Pool, cpu_count
import cv2
import numpy as np
from mmcv.runner.dist_utils import get_dist_info
from PIL import Image
from tqdm import tqdm
from easycv.datasets.registry import DATASOURCES
from easycv.file import io
from easycv.utils.constant import MAX_READ_IMAGE_TRY_TIMES
img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.dng']
def parse_xml(xml_path, classes):
with io.open(xml_path, 'r') as f:
tree = ET.parse(f)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
gt_bboxes = []
gt_labels = []
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if int(difficult) == 1:
continue
if cls not in classes:
logging.warning(
'class: %s not in given class list, skip the object!' %
cls)
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
box = (float(xmlbox.find('xmin').text),
float(xmlbox.find('ymin').text),
float(xmlbox.find('xmax').text),
float(xmlbox.find('ymax').text))
gt_bboxes.append(box)
gt_labels.append(cls_id)
if len(gt_bboxes) == 0:
gt_bboxes = np.zeros((0, 5), dtype=np.float32)
img_info = {
'gt_bboxes': np.array(gt_bboxes, dtype=np.float32),
'gt_labels': np.array(gt_labels, dtype=np.int64)
}
return img_info
@DATASOURCES.register_module
class DetSourceVOC(object):
"""
data dir is as follows:
```
|- voc_data
|-ImageSets
|-Main
|-train.txt
|-...
|-JPEGImages
|-00001.jpg
|-...
|-Annotations
|-00001.xml
|-...
```
Example1:
data_source = DetSourceVOC(
path='/your/voc_data/ImageSets/Main/train.txt',
classes=${VOC_CLASSES},
)
Example1:
data_source = DetSourceVOC(
path='/your/voc_data/train.txt',
classes=${VOC_CLASSES},
img_root_path='/your/voc_data/images',
img_root_path='/your/voc_data/annotations'
)
"""
def __init__(self,
path,
classes=[],
img_root_path=None,
label_root_path=None,
cache_at_init=False,
cache_on_the_fly=False,
img_suffix='.jpg',
label_suffix='.xml',
**kwargs):
"""
Args:
path: path of img id list file in ImageSets/Main/
classes: classes list
img_root_path: image dir path, if None, default to detect the image dir by the relative path of the `path`
according to the VOC data format.
label_root_path: label dir path, if None, default to detect the label dir by the relative path of the `path`
according to the VOC data format.
cache_at_init: if set True, will cache in memory in __init__ for faster training
cache_on_the_fly: if set True, will cache in memroy during training
img_suffix: suffix of image file
label_suffix: suffix of label file
"""
self.CLASSES = classes
self.rank, self.world_size = get_dist_info()
self.path = path
self.img_root_path = img_root_path
self.label_root_path = label_root_path
self.cache_at_init = cache_at_init
self.cache_on_the_fly = cache_on_the_fly
if not img_root_path:
self.img_root_path = os.path.join(
self.path.split('ImageSets/Main')[0], 'JPEGImages')
if not self.label_root_path:
self.label_root_path = os.path.join(
self.path.split('ImageSets/Main')[0], 'Annotations')
imgs_path_list = []
labels_path_list = []
with io.open(self.path, 'r') as t:
id_lines = t.read().splitlines()
for id_line in id_lines:
img_id = id_line.strip().split(' ')[0]
img_path = os.path.join(self.img_root_path,
img_id + img_suffix)
imgs_path_list.append(img_path)
label_path = os.path.join(self.label_root_path,
img_id + label_suffix)
labels_path_list.append(label_path)
# TODO: filter bad sample
self.samples_list = self.build_samples(
list(zip(imgs_path_list, labels_path_list)))
def get_source_info(self, img_and_label):
img_path = img_and_label[0]
label_path = img_and_label[1]
source_info = parse_xml(label_path, self.CLASSES)
source_info.update({'filename': img_path})
return source_info
def _build_sample_from_source_info(self, source_info):
if 'filename' not in source_info:
return {}
result_dict = source_info
img_info = self.load_image(source_info['filename'])
result_dict.update(img_info)
result_dict.update({
'img_fields': ['img'],
'bbox_fields': ['gt_bboxes']
})
return result_dict
def build_sample(self, data):
result_dict = self.get_source_info(data)
if self.cache_at_init:
result_dict = self._build_sample_from_source_info(result_dict)
return result_dict
def build_samples(self, iterable):
samples_list = []
proc_num = int(cpu_count() / 2)
with Pool(processes=proc_num) as p:
with tqdm(total=len(iterable), desc='Scanning images') as pbar:
for _, result_dict in enumerate(
p.imap_unordered(self.build_sample, iterable)):
if result_dict:
samples_list.append(result_dict)
pbar.update()
return samples_list
def load_image(self, img_path):
result = {}
try_cnt = 0
img = None
while try_cnt < MAX_READ_IMAGE_TRY_TIMES:
try:
with io.open(img_path, 'rb') as infile:
# cv2.imdecode may corrupt when the img is broken
image = Image.open(infile)
img = cv2.cvtColor(
np.asarray(image, dtype=np.uint8), cv2.COLOR_RGB2BGR)
assert img is not None, 'Image load error, try %s : %s' % (
try_cnt, img_path)
break
except:
time.sleep(2)
try_cnt += 1
if img is None:
raise ValueError('Read Image Times Out: ' + img_path)
result['img'] = img.astype(np.float32)
result['img_shape'] = img.shape # h, w, c
result['ori_img_shape'] = img.shape
return result
def get_length(self):
return len(self.samples_list)
def __len__(self):
return self.get_length()
def get_ann_info(self, idx):
"""
Get raw annotation info, include bounding boxes, labels and so on.
`bboxes` format is as [x1, y1, x2, y2] without normalization.
"""
sample_info = self.samples_list[idx]
if sample_info.get('gt_labels', None) is None:
sample_info = self._build_sample_from_source_info(sample_info)
if self.cache_at_init or self.cache_on_the_fly:
self.samples_list[idx] = sample_info
annotations = {
'bboxes': sample_info['gt_bboxes'],
'labels': sample_info['gt_labels'],
'groundtruth_is_crowd': np.zeros_like(sample_info['gt_labels'])
}
return annotations
def get_sample(self, idx):
result_dict = self.samples_list[idx]
try:
if result_dict.get('img', None) is None:
result_dict = self._build_sample_from_source_info(result_dict)
if self.cache_at_init or self.cache_on_the_fly:
self.samples_list[idx] = result_dict
except Exception as e:
logging.warning(e)
if not result_dict:
logging.warning(
'Something wrong with current sample %s,Try load next sample...'
% result_dict.get('filename', ''))
result_dict = self.get_sample(idx + 1)
return result_dict