EasyCV/configs/classification/imagenet/timm/timm_config.py

111 lines
2.7 KiB
Python

_base_ = 'configs/base.py'
log_config = dict(
interval=10,
hooks=[dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')])
# model settings
model = dict(
type='Classification',
train_preprocess=['mixUp'],
mixup_cfg=dict(
mixup_alpha=0.2,
prob=1.0,
mode='batch',
label_smoothing=0.1,
num_classes=1000),
backbone=dict(
type='PytorchImageModelWrapper',
model_name='vit_base_patch16_224',
num_classes=1000,
),
head=dict(
type='ClsHead',
loss_config={
'type': 'SoftTargetCrossEntropy',
},
with_fc=False))
load_from = None
data_train_list = './imagenet_raw/meta/train_labeled.txt'
data_train_root = './imagenet_raw/train/'
data_test_list = './imagenet_raw/meta/val_labeled.txt'
data_test_root = './imagenet_raw/val/'
data_all_list = './imagenet_raw/meta/all_labeled.txt'
data_root = './imagenet_raw/'
dataset_type = 'ClsDataset'
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_pipeline = [
dict(type='RandomResizedCrop', size=224),
dict(type='RandomHorizontalFlip'),
dict(type='MMAutoAugment'),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img', 'gt_labels'])
]
test_pipeline = [
dict(type='Resize', size=256),
dict(type='CenterCrop', size=224),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img', 'gt_labels'])
]
data = dict(
imgs_per_gpu=64, # total 256
workers_per_gpu=8,
train=dict(
type=dataset_type,
data_source=dict(
list_file=data_train_list,
root=data_train_root,
type='ClsSourceImageList'),
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_source=dict(
list_file=data_test_list,
root=data_test_root,
type='ClsSourceImageList'),
pipeline=test_pipeline))
eval_config = dict(initial=True, interval=1, gpu_collect=True)
eval_pipelines = [
dict(
mode='test',
data=data['val'],
dist_eval=True,
evaluators=[dict(type='ClsEvaluator', topk=(1, 5))],
)
]
# additional hooks
custom_hooks = []
# optimizer
optimizer = dict(
type='AdamW',
lr=0.003,
weight_decay=0.3,
paramwise_options={
'cls_token': dict(weight_decay=0.),
'pos_embed': dict(weight_decay=0.),
})
optimizer_config = dict(grad_clip=dict(max_norm=1.0), update_interval=8)
# learning policy
lr_config = dict(
policy='CosineAnnealing',
min_lr=0,
warmup='linear',
warmup_iters=10000,
warmup_ratio=1e-4,
)
checkpoint_config = dict(interval=30)
# runtime settings
total_epochs = 90