EasyCV/easycv/models/backbones/hrnet.py

800 lines
29 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
# Adapt from https://github.com/open-mmlab/mmpose/blob/master/mmpose/models/backbones/hrnet.py
import copy
import torch.nn as nn
from mmcv.cnn import (build_conv_layer, build_norm_layer, constant_init,
normal_init)
from torch.nn.modules.batchnorm import _BatchNorm
from easycv.models.registry import BACKBONES
from ..modelzoo import hrnet as model_urls
from .resnet import BasicBlock
def get_expansion(block, expansion=None):
"""Get the expansion of a residual block.
The block expansion will be obtained by the following order:
1. If ``expansion`` is given, just return it.
2. If ``block`` has the attribute ``expansion``, then return
``block.expansion``.
3. Return the default value according the the block type:
1 for ``BasicBlock`` and 4 for ``Bottleneck``.
Args:
block (class): The block class.
expansion (int | None): The given expansion ratio.
Returns:
int: The expansion of the block.
"""
if isinstance(expansion, int):
assert expansion > 0
elif expansion is None:
if hasattr(block, 'expansion'):
expansion = block.expansion
elif issubclass(block, BasicBlock):
expansion = 1
elif issubclass(block, Bottleneck):
expansion = 4
else:
raise TypeError(f'expansion is not specified for {block.__name__}')
else:
raise TypeError('expansion must be an integer or None')
return expansion
class Bottleneck(nn.Module):
"""Bottleneck block for ResNet.
Args:
in_channels (int): Input channels of this block.
out_channels (int): Output channels of this block.
expansion (int): The ratio of ``out_channels/mid_channels`` where
``mid_channels`` is the input/output channels of conv2. Default: 4.
stride (int): stride of the block. Default: 1
dilation (int): dilation of convolution. Default: 1
downsample (nn.Module): downsample operation on identity branch.
Default: None.
style (str): ``"pytorch"`` or ``"caffe"``. If set to "pytorch", the
stride-two layer is the 3x3 conv layer, otherwise the stride-two
layer is the first 1x1 conv layer. Default: "pytorch".
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed.
conv_cfg (dict): dictionary to construct and config conv layer.
Default: None
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
"""
def __init__(self,
in_channels,
out_channels,
expansion=4,
stride=1,
dilation=1,
downsample=None,
style='pytorch',
with_cp=False,
conv_cfg=None,
norm_cfg=dict(type='BN')):
# Protect mutable default arguments
norm_cfg = copy.deepcopy(norm_cfg)
super().__init__()
assert style in ['pytorch', 'caffe']
self.in_channels = in_channels
self.out_channels = out_channels
self.expansion = expansion
assert out_channels % expansion == 0
self.mid_channels = out_channels // expansion
self.stride = stride
self.dilation = dilation
self.style = style
self.with_cp = with_cp
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
if self.style == 'pytorch':
self.conv1_stride = 1
self.conv2_stride = stride
else:
self.conv1_stride = stride
self.conv2_stride = 1
self.norm1_name, norm1 = build_norm_layer(
norm_cfg, self.mid_channels, postfix=1)
self.norm2_name, norm2 = build_norm_layer(
norm_cfg, self.mid_channels, postfix=2)
self.norm3_name, norm3 = build_norm_layer(
norm_cfg, out_channels, postfix=3)
self.conv1 = build_conv_layer(
conv_cfg,
in_channels,
self.mid_channels,
kernel_size=1,
stride=self.conv1_stride,
bias=False)
self.add_module(self.norm1_name, norm1)
self.conv2 = build_conv_layer(
conv_cfg,
self.mid_channels,
self.mid_channels,
kernel_size=3,
stride=self.conv2_stride,
padding=dilation,
dilation=dilation,
bias=False)
self.add_module(self.norm2_name, norm2)
self.conv3 = build_conv_layer(
conv_cfg,
self.mid_channels,
out_channels,
kernel_size=1,
bias=False)
self.add_module(self.norm3_name, norm3)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
@property
def norm1(self):
"""nn.Module: the normalization layer named "norm1" """
return getattr(self, self.norm1_name)
@property
def norm2(self):
"""nn.Module: the normalization layer named "norm2" """
return getattr(self, self.norm2_name)
@property
def norm3(self):
"""nn.Module: the normalization layer named "norm3" """
return getattr(self, self.norm3_name)
def forward(self, x):
"""Forward function."""
def _inner_forward(x):
identity = x
out = self.conv1(x)
out = self.norm1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.norm2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.norm3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
return out
if self.with_cp and x.requires_grad:
raise NotImplementedError
else:
out = _inner_forward(x)
out = self.relu(out)
return out
class HRModule(nn.Module):
"""High-Resolution Module for HRNet.
In this module, every branch has 4 BasicBlocks/Bottlenecks. Fusion/Exchange
is in this module.
"""
def __init__(self,
num_branches,
blocks,
num_blocks,
in_channels,
num_channels,
multiscale_output=False,
with_cp=False,
conv_cfg=None,
norm_cfg=dict(type='BN'),
upsample_cfg=dict(mode='nearest', align_corners=None)):
# Protect mutable default arguments
norm_cfg = copy.deepcopy(norm_cfg)
super().__init__()
self._check_branches(num_branches, num_blocks, in_channels,
num_channels)
self.in_channels = in_channels
self.num_branches = num_branches
self.multiscale_output = multiscale_output
self.norm_cfg = norm_cfg
self.conv_cfg = conv_cfg
self.upsample_cfg = upsample_cfg
self.with_cp = with_cp
self.branches = self._make_branches(num_branches, blocks, num_blocks,
num_channels)
self.fuse_layers = self._make_fuse_layers()
self.relu = nn.ReLU(inplace=True)
@staticmethod
def _check_branches(num_branches, num_blocks, in_channels, num_channels):
"""Check input to avoid ValueError."""
if num_branches != len(num_blocks):
error_msg = f'NUM_BRANCHES({num_branches}) ' \
f'!= NUM_BLOCKS({len(num_blocks)})'
raise ValueError(error_msg)
if num_branches != len(num_channels):
error_msg = f'NUM_BRANCHES({num_branches}) ' \
f'!= NUM_CHANNELS({len(num_channels)})'
raise ValueError(error_msg)
if num_branches != len(in_channels):
error_msg = f'NUM_BRANCHES({num_branches}) ' \
f'!= NUM_INCHANNELS({len(in_channels)})'
raise ValueError(error_msg)
def _make_one_branch(self,
branch_index,
block,
num_blocks,
num_channels,
stride=1):
"""Make one branch."""
downsample = None
if stride != 1 or \
self.in_channels[branch_index] != \
num_channels[branch_index] * get_expansion(block):
downsample = nn.Sequential(
build_conv_layer(
self.conv_cfg,
self.in_channels[branch_index],
num_channels[branch_index] * get_expansion(block),
kernel_size=1,
stride=stride,
bias=False),
build_norm_layer(
self.norm_cfg,
num_channels[branch_index] * get_expansion(block))[1])
layers = []
layers.append(
block(
self.in_channels[branch_index],
num_channels[branch_index] * get_expansion(block),
stride=stride,
downsample=downsample,
with_cp=self.with_cp,
norm_cfg=self.norm_cfg,
conv_cfg=self.conv_cfg))
self.in_channels[branch_index] = \
num_channels[branch_index] * get_expansion(block)
for _ in range(1, num_blocks[branch_index]):
layers.append(
block(
self.in_channels[branch_index],
num_channels[branch_index] * get_expansion(block),
with_cp=self.with_cp,
norm_cfg=self.norm_cfg,
conv_cfg=self.conv_cfg))
return nn.Sequential(*layers)
def _make_branches(self, num_branches, block, num_blocks, num_channels):
"""Make branches."""
branches = []
for i in range(num_branches):
branches.append(
self._make_one_branch(i, block, num_blocks, num_channels))
return nn.ModuleList(branches)
def _make_fuse_layers(self):
"""Make fuse layer."""
if self.num_branches == 1:
return None
num_branches = self.num_branches
in_channels = self.in_channels
fuse_layers = []
num_out_branches = num_branches if self.multiscale_output else 1
for i in range(num_out_branches):
fuse_layer = []
for j in range(num_branches):
if j > i:
fuse_layer.append(
nn.Sequential(
build_conv_layer(
self.conv_cfg,
in_channels[j],
in_channels[i],
kernel_size=1,
stride=1,
padding=0,
bias=False),
build_norm_layer(self.norm_cfg, in_channels[i])[1],
nn.Upsample(
scale_factor=2**(j - i),
mode=self.upsample_cfg['mode'],
align_corners=self.
upsample_cfg['align_corners'])))
elif j == i:
fuse_layer.append(None)
else:
conv_downsamples = []
for k in range(i - j):
if k == i - j - 1:
conv_downsamples.append(
nn.Sequential(
build_conv_layer(
self.conv_cfg,
in_channels[j],
in_channels[i],
kernel_size=3,
stride=2,
padding=1,
bias=False),
build_norm_layer(self.norm_cfg,
in_channels[i])[1]))
else:
conv_downsamples.append(
nn.Sequential(
build_conv_layer(
self.conv_cfg,
in_channels[j],
in_channels[j],
kernel_size=3,
stride=2,
padding=1,
bias=False),
build_norm_layer(self.norm_cfg,
in_channels[j])[1],
nn.ReLU(inplace=True)))
fuse_layer.append(nn.Sequential(*conv_downsamples))
fuse_layers.append(nn.ModuleList(fuse_layer))
return nn.ModuleList(fuse_layers)
def forward(self, x):
"""Forward function."""
if self.num_branches == 1:
return [self.branches[0](x[0])]
for i in range(self.num_branches):
x[i] = self.branches[i](x[i])
x_fuse = []
for i in range(len(self.fuse_layers)):
y = 0
for j in range(self.num_branches):
if i == j:
y += x[j]
else:
y += self.fuse_layers[i][j](x[j])
x_fuse.append(self.relu(y))
return x_fuse
@BACKBONES.register_module()
class HRNet(nn.Module):
"""HRNet backbone.
`High-Resolution Representations for Labeling Pixels and Regions
<https://arxiv.org/abs/1904.04514>`__
Args:
extra (dict): detailed configuration for each stage of HRNet.
in_channels (int): Number of input image channels. Default: 3.
conv_cfg (dict): dictionary to construct and config conv layer.
norm_cfg (dict): dictionary to construct and config norm layer.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed.
zero_init_residual (bool): whether to use zero init for last norm layer
in resblocks to let them behave as identity.
Example:
>>> from mmpose.models import HRNet
>>> import torch
>>> extra = dict(
>>> stage1=dict(
>>> num_modules=1,
>>> num_branches=1,
>>> block='BOTTLENECK',
>>> num_blocks=(4, ),
>>> num_channels=(64, )),
>>> stage2=dict(
>>> num_modules=1,
>>> num_branches=2,
>>> block='BASIC',
>>> num_blocks=(4, 4),
>>> num_channels=(32, 64)),
>>> stage3=dict(
>>> num_modules=4,
>>> num_branches=3,
>>> block='BASIC',
>>> num_blocks=(4, 4, 4),
>>> num_channels=(32, 64, 128)),
>>> stage4=dict(
>>> num_modules=3,
>>> num_branches=4,
>>> block='BASIC',
>>> num_blocks=(4, 4, 4, 4),
>>> num_channels=(32, 64, 128, 256)))
>>> self = HRNet(extra, in_channels=1)
>>> self.eval()
>>> inputs = torch.rand(1, 1, 32, 32)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
(1, 32, 8, 8)
"""
blocks_dict = {'BASIC': BasicBlock, 'BOTTLENECK': Bottleneck}
arch_zoo = {
# num_modules, num_branches, block, num_blocks, num_channels
'w18': [[1, 1, 'BOTTLENECK', (4, ), (64, )],
[1, 2, 'BASIC', (4, 4), (18, 36)],
[4, 3, 'BASIC', (4, 4, 4), (18, 36, 72)],
[3, 4, 'BASIC', (4, 4, 4, 4), (18, 36, 72, 144)]],
'w30': [[1, 1, 'BOTTLENECK', (4, ), (64, )],
[1, 2, 'BASIC', (4, 4), (30, 60)],
[4, 3, 'BASIC', (4, 4, 4), (30, 60, 120)],
[3, 4, 'BASIC', (4, 4, 4, 4), (30, 60, 120, 240)]],
'w32': [[1, 1, 'BOTTLENECK', (4, ), (64, )],
[1, 2, 'BASIC', (4, 4), (32, 64)],
[4, 3, 'BASIC', (4, 4, 4), (32, 64, 128)],
[3, 4, 'BASIC', (4, 4, 4, 4), (32, 64, 128, 256)]],
'w40': [[1, 1, 'BOTTLENECK', (4, ), (64, )],
[1, 2, 'BASIC', (4, 4), (40, 80)],
[4, 3, 'BASIC', (4, 4, 4), (40, 80, 160)],
[3, 4, 'BASIC', (4, 4, 4, 4), (40, 80, 160, 320)]],
'w44': [[1, 1, 'BOTTLENECK', (4, ), (64, )],
[1, 2, 'BASIC', (4, 4), (44, 88)],
[4, 3, 'BASIC', (4, 4, 4), (44, 88, 176)],
[3, 4, 'BASIC', (4, 4, 4, 4), (44, 88, 176, 352)]],
'w48': [[1, 1, 'BOTTLENECK', (4, ), (64, )],
[1, 2, 'BASIC', (4, 4), (48, 96)],
[4, 3, 'BASIC', (4, 4, 4), (48, 96, 192)],
[3, 4, 'BASIC', (4, 4, 4, 4), (48, 96, 192, 384)]],
'w64': [[1, 1, 'BOTTLENECK', (4, ), (64, )],
[1, 2, 'BASIC', (4, 4), (64, 128)],
[4, 3, 'BASIC', (4, 4, 4), (64, 128, 256)],
[3, 4, 'BASIC', (4, 4, 4, 4), (64, 128, 256, 512)]],
} # yapf:disable
def __init__(self,
arch='w32',
extra=None,
in_channels=3,
conv_cfg=None,
norm_cfg=dict(type='BN'),
norm_eval=False,
with_cp=False,
zero_init_residual=False,
multi_scale_output=False):
# Protect mutable default arguments
norm_cfg = copy.deepcopy(norm_cfg)
super().__init__()
extra = self.parse_arch(arch, extra)
self.extra = extra
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.norm_eval = norm_eval
self.with_cp = with_cp
self.zero_init_residual = zero_init_residual
# stem net
self.norm1_name, norm1 = build_norm_layer(self.norm_cfg, 64, postfix=1)
self.norm2_name, norm2 = build_norm_layer(self.norm_cfg, 64, postfix=2)
self.conv1 = build_conv_layer(
self.conv_cfg,
in_channels,
64,
kernel_size=3,
stride=2,
padding=1,
bias=False)
self.add_module(self.norm1_name, norm1)
self.conv2 = build_conv_layer(
self.conv_cfg,
64,
64,
kernel_size=3,
stride=2,
padding=1,
bias=False)
self.add_module(self.norm2_name, norm2)
self.relu = nn.ReLU(inplace=True)
self.upsample_cfg = self.extra.get('upsample', {
'mode': 'nearest',
'align_corners': None
})
# stage 1
self.stage1_cfg = self.extra['stage1']
num_channels = self.stage1_cfg['num_channels'][0]
block_type = self.stage1_cfg['block']
num_blocks = self.stage1_cfg['num_blocks'][0]
block = self.blocks_dict[block_type]
stage1_out_channels = num_channels * get_expansion(block)
self.layer1 = self._make_layer(block, 64, stage1_out_channels,
num_blocks)
# stage 2
self.stage2_cfg = self.extra['stage2']
num_channels = self.stage2_cfg['num_channels']
block_type = self.stage2_cfg['block']
block = self.blocks_dict[block_type]
num_channels = [
channel * get_expansion(block) for channel in num_channels
]
self.transition1 = self._make_transition_layer([stage1_out_channels],
num_channels)
self.stage2, pre_stage_channels = self._make_stage(
self.stage2_cfg, num_channels)
# stage 3
self.stage3_cfg = self.extra['stage3']
num_channels = self.stage3_cfg['num_channels']
block_type = self.stage3_cfg['block']
block = self.blocks_dict[block_type]
num_channels = [
channel * get_expansion(block) for channel in num_channels
]
self.transition2 = self._make_transition_layer(pre_stage_channels,
num_channels)
self.stage3, pre_stage_channels = self._make_stage(
self.stage3_cfg, num_channels)
# stage 4
self.stage4_cfg = self.extra['stage4']
num_channels = self.stage4_cfg['num_channels']
block_type = self.stage4_cfg['block']
block = self.blocks_dict[block_type]
num_channels = [
channel * get_expansion(block) for channel in num_channels
]
self.transition3 = self._make_transition_layer(pre_stage_channels,
num_channels)
self.stage4, pre_stage_channels = self._make_stage(
self.stage4_cfg,
num_channels,
multiscale_output=self.stage4_cfg.get('multiscale_output',
multi_scale_output))
self.default_pretrained_model_path = model_urls.get(
self.__class__.__name__ + arch, None)
@property
def norm1(self):
"""nn.Module: the normalization layer named "norm1" """
return getattr(self, self.norm1_name)
@property
def norm2(self):
"""nn.Module: the normalization layer named "norm2" """
return getattr(self, self.norm2_name)
def _make_transition_layer(self, num_channels_pre_layer,
num_channels_cur_layer):
"""Make transition layer."""
num_branches_cur = len(num_channels_cur_layer)
num_branches_pre = len(num_channels_pre_layer)
transition_layers = []
for i in range(num_branches_cur):
if i < num_branches_pre:
if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
transition_layers.append(
nn.Sequential(
build_conv_layer(
self.conv_cfg,
num_channels_pre_layer[i],
num_channels_cur_layer[i],
kernel_size=3,
stride=1,
padding=1,
bias=False),
build_norm_layer(self.norm_cfg,
num_channels_cur_layer[i])[1],
nn.ReLU(inplace=True)))
else:
transition_layers.append(None)
else:
conv_downsamples = []
for j in range(i + 1 - num_branches_pre):
in_channels = num_channels_pre_layer[-1]
out_channels = num_channels_cur_layer[i] \
if j == i - num_branches_pre else in_channels
conv_downsamples.append(
nn.Sequential(
build_conv_layer(
self.conv_cfg,
in_channels,
out_channels,
kernel_size=3,
stride=2,
padding=1,
bias=False),
build_norm_layer(self.norm_cfg, out_channels)[1],
nn.ReLU(inplace=True)))
transition_layers.append(nn.Sequential(*conv_downsamples))
return nn.ModuleList(transition_layers)
def _make_layer(self, block, in_channels, out_channels, blocks, stride=1):
"""Make layer."""
downsample = None
if stride != 1 or in_channels != out_channels:
downsample = nn.Sequential(
build_conv_layer(
self.conv_cfg,
in_channels,
out_channels,
kernel_size=1,
stride=stride,
bias=False),
build_norm_layer(self.norm_cfg, out_channels)[1])
layers = []
layers.append(
block(
in_channels,
out_channels,
stride=stride,
downsample=downsample,
with_cp=self.with_cp,
norm_cfg=self.norm_cfg,
conv_cfg=self.conv_cfg))
for _ in range(1, blocks):
layers.append(
block(
out_channels,
out_channels,
with_cp=self.with_cp,
norm_cfg=self.norm_cfg,
conv_cfg=self.conv_cfg))
return nn.Sequential(*layers)
def _make_stage(self, layer_config, in_channels, multiscale_output=True):
"""Make stage."""
num_modules = layer_config['num_modules']
num_branches = layer_config['num_branches']
num_blocks = layer_config['num_blocks']
num_channels = layer_config['num_channels']
block = self.blocks_dict[layer_config['block']]
hr_modules = []
for i in range(num_modules):
# multi_scale_output is only used for the last module
if not multiscale_output and i == num_modules - 1:
reset_multiscale_output = False
else:
reset_multiscale_output = True
hr_modules.append(
HRModule(
num_branches,
block,
num_blocks,
in_channels,
num_channels,
reset_multiscale_output,
with_cp=self.with_cp,
norm_cfg=self.norm_cfg,
conv_cfg=self.conv_cfg,
upsample_cfg=self.upsample_cfg))
in_channels = hr_modules[-1].in_channels
return nn.Sequential(*hr_modules), in_channels
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, std=0.001)
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
constant_init(m, 1)
if self.zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
constant_init(m.norm3, 0)
elif isinstance(m, BasicBlock):
constant_init(m.norm2, 0)
def forward(self, x):
"""Forward function."""
x = self.conv1(x)
x = self.norm1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.norm2(x)
x = self.relu(x)
x = self.layer1(x)
x_list = []
for i in range(self.stage2_cfg['num_branches']):
if self.transition1[i] is not None:
x_list.append(self.transition1[i](x))
else:
x_list.append(x)
y_list = self.stage2(x_list)
x_list = []
for i in range(self.stage3_cfg['num_branches']):
if self.transition2[i] is not None:
x_list.append(self.transition2[i](y_list[-1]))
else:
x_list.append(y_list[i])
y_list = self.stage3(x_list)
x_list = []
for i in range(self.stage4_cfg['num_branches']):
if self.transition3[i] is not None:
x_list.append(self.transition3[i](y_list[-1]))
else:
x_list.append(y_list[i])
y_list = self.stage4(x_list)
return y_list
def train(self, mode=True):
"""Convert the model into training mode."""
super().train(mode)
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval()
def parse_arch(self, arch, extra=None):
if extra is not None:
return extra
assert arch in self.arch_zoo, \
('Invalid arch, please choose arch from '
f'{list(self.arch_zoo.keys())}, or specify `extra` '
'argument directly.')
extra = dict()
for i, stage_setting in enumerate(self.arch_zoo[arch], start=1):
extra[f'stage{i}'] = dict(
num_modules=stage_setting[0],
num_branches=stage_setting[1],
block=stage_setting[2],
num_blocks=stage_setting[3],
num_channels=stage_setting[4],
)
return extra