mirror of https://github.com/alibaba/EasyCV.git
177 lines
5.9 KiB
Python
177 lines
5.9 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
r""" This model is taken from the official PyTorch model zoo.
|
|
- torchvision.models.mobilenet.py on 31th Aug, 2019
|
|
"""
|
|
|
|
from torch import nn
|
|
|
|
from ..modelzoo import mobilenetv2 as model_urls
|
|
from ..registry import BACKBONES
|
|
|
|
__all__ = ['MobileNetV2']
|
|
|
|
|
|
def _make_divisible(v, divisor, min_value=None):
|
|
"""
|
|
This function is taken from the original tf repo.
|
|
It ensures that all layers have a channel number that is divisible by 8
|
|
It can be seen here:
|
|
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
|
:param v:
|
|
:param divisor:
|
|
:param min_value:
|
|
:return:
|
|
"""
|
|
if min_value is None:
|
|
min_value = divisor
|
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
|
# Make sure that round down does not go down by more than 10%.
|
|
if new_v < 0.9 * v:
|
|
new_v += divisor
|
|
return new_v
|
|
|
|
|
|
class ConvBNReLU(nn.Sequential):
|
|
|
|
def __init__(self,
|
|
in_planes,
|
|
out_planes,
|
|
kernel_size=3,
|
|
stride=1,
|
|
groups=1):
|
|
padding = (kernel_size - 1) // 2
|
|
super(ConvBNReLU, self).__init__(
|
|
nn.Conv2d(
|
|
in_planes,
|
|
out_planes,
|
|
kernel_size,
|
|
stride,
|
|
padding,
|
|
groups=groups,
|
|
bias=False), nn.BatchNorm2d(out_planes),
|
|
nn.ReLU6(inplace=True))
|
|
|
|
|
|
class InvertedResidual(nn.Module):
|
|
|
|
def __init__(self, inp, oup, stride, expand_ratio):
|
|
super(InvertedResidual, self).__init__()
|
|
self.stride = stride
|
|
assert stride in [1, 2]
|
|
|
|
hidden_dim = int(round(inp * expand_ratio))
|
|
self.use_res_connect = self.stride == 1 and inp == oup
|
|
|
|
layers = []
|
|
if expand_ratio != 1:
|
|
# pw
|
|
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
|
|
layers.extend([
|
|
# dw
|
|
ConvBNReLU(
|
|
hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
|
|
# pw-linear
|
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
|
nn.BatchNorm2d(oup),
|
|
])
|
|
self.conv = nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
if self.use_res_connect:
|
|
return x + self.conv(x)
|
|
else:
|
|
return self.conv(x)
|
|
|
|
|
|
@BACKBONES.register_module
|
|
class MobileNetV2(nn.Module):
|
|
|
|
def __init__(self,
|
|
num_classes=0,
|
|
width_multi=1.0,
|
|
inverted_residual_setting=None,
|
|
round_nearest=8):
|
|
"""
|
|
MobileNet V2 main class
|
|
Args:
|
|
num_classes (int): Number of classes
|
|
width_multi (float): Width multiplier - adjusts number of channels in each layer by this amount
|
|
inverted_residual_setting: Network structure
|
|
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
|
|
Set to 1 to turn off rounding
|
|
"""
|
|
super(MobileNetV2, self).__init__()
|
|
block = InvertedResidual
|
|
input_channel = 32
|
|
last_channel = 1280
|
|
|
|
if inverted_residual_setting is None:
|
|
inverted_residual_setting = [
|
|
# t, c, n, s
|
|
[1, 16, 1, 1],
|
|
[6, 24, 2, 2],
|
|
[6, 32, 3, 2],
|
|
[6, 64, 4, 2],
|
|
[6, 96, 3, 1],
|
|
[6, 160, 3, 2],
|
|
[6, 320, 1, 1],
|
|
]
|
|
|
|
# only check the first element, assuming user knows t,c,n,s are required
|
|
if len(inverted_residual_setting) == 0 or len(
|
|
inverted_residual_setting[0]) != 4:
|
|
raise ValueError('inverted_residual_setting should be non-empty '
|
|
'or a 4-element list, got {}'.format(
|
|
inverted_residual_setting))
|
|
|
|
# building first layer
|
|
input_channel = _make_divisible(input_channel * width_multi,
|
|
round_nearest)
|
|
self.last_channel = _make_divisible(
|
|
last_channel * max(1.0, width_multi), round_nearest)
|
|
features = [ConvBNReLU(3, input_channel, stride=2)]
|
|
# building inverted residual blocks
|
|
for t, c, n, s in inverted_residual_setting:
|
|
output_channel = _make_divisible(c * width_multi, round_nearest)
|
|
for i in range(n):
|
|
stride = s if i == 0 else 1
|
|
features.append(
|
|
block(
|
|
input_channel, output_channel, stride, expand_ratio=t))
|
|
input_channel = output_channel
|
|
# building last several layers
|
|
features.append(
|
|
ConvBNReLU(input_channel, self.last_channel, kernel_size=1))
|
|
# make it nn.Sequential
|
|
self.features = nn.Sequential(*features)
|
|
|
|
# building classifier
|
|
if num_classes > 0:
|
|
self.classifier = nn.Sequential(
|
|
nn.Dropout(0.2),
|
|
nn.Linear(self.last_channel, num_classes),
|
|
)
|
|
self.default_pretrained_model_path = model_urls[self.__class__.__name__
|
|
+ '_' +
|
|
str(width_multi)]
|
|
|
|
def init_weights(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out')
|
|
if m.bias is not None:
|
|
nn.init.zeros_(m.bias)
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
nn.init.ones_(m.weight)
|
|
nn.init.zeros_(m.bias)
|
|
elif isinstance(m, nn.Linear):
|
|
nn.init.normal_(m.weight, 0, 0.01)
|
|
nn.init.zeros_(m.bias)
|
|
|
|
def forward(self, x):
|
|
x = self.features(x)
|
|
if hasattr(self, 'classifier'):
|
|
x = x.mean([2, 3])
|
|
x = self.classifier(x)
|
|
return [x]
|