EasyCV/easycv/models/backbones/vit_transfomer_dynamic.py

528 lines
17 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
"""
Mostly copy-paste from timm library.
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
dynamic Input support borrow from
https://github.com/microsoft/esvit/blob/main/models/vision_transformer.py
"""
import math
from functools import partial
import torch
import torch.nn as nn
# from utils import trunc_normal_
from timm.models.layers import trunc_normal_
from easycv.utils.checkpoint import load_checkpoint
from easycv.utils.logger import get_root_logger
def drop_path(x, drop_prob: float = 0., training: bool = False):
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0], ) + (1, ) * (
x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(
shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Mlp(nn.Module):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x, attn
class Block(nn.Module):
def __init__(self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop)
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
def forward(self, x, return_attention=False):
y, attn = self.attn(self.norm1(x))
if return_attention:
return attn
x = x + self.drop_path(y)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
def forward_fea_and_attn(self, x):
y, attn = self.attn(self.norm1(x))
x = x + self.drop_path(y)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x, attn
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
num_patches = (img_size // patch_size) * (img_size // patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class VisionTransformer(nn.Module):
""" Vision Transformer """
def __init__(self,
img_size=[224],
patch_size=16,
in_chans=3,
num_classes=0,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_layer=nn.LayerNorm,
use_dense_prediction=False,
global_pool=False,
**kwargs):
super().__init__()
self.num_features = self.embed_dim = embed_dim
self.patch_embed = PatchEmbed(
img_size=img_size[0],
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer) for i in range(depth)
])
self.norm = norm_layer(embed_dim)
# Classifier head
self.head = nn.Linear(
embed_dim, num_classes) if num_classes > 0 else nn.Identity()
# Dense prediction head
self.use_dense_prediction = use_dense_prediction
if self.use_dense_prediction:
self.head_dense = None
# Use global average pooling
self.global_pool = global_pool
if self.global_pool:
self.fc_norm = norm_layer(embed_dim)
self.norm = None
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def init_weights(self, pretrained=None):
if isinstance(pretrained, str) or isinstance(pretrained, dict):
logger = get_root_logger()
load_checkpoint(
self,
pretrained,
map_location='cpu',
strict=False,
logger=logger)
elif pretrained is None:
self.apply(self._init_weights)
else:
raise TypeError('pretrained must be a str or None')
def forward(self, x):
# convert to list
if not isinstance(x, list):
x = [x]
# Perform forward pass separately on each resolution input.
# The inputs corresponding to a single resolution are clubbed and single
# forward is run on the same resolution inputs. Hence we do several
# forward passes = number of different resolutions used. We then
# concatenate all the output features.
idx_crops = torch.cumsum(
torch.unique_consecutive(
torch.tensor([inp.shape[-1] for inp in x]),
return_counts=True,
)[1], 0)
if self.use_dense_prediction:
start_idx = 0
for end_idx in idx_crops:
_out_cls, _out_fea = self.forward_features(
torch.cat(x[start_idx:end_idx]))
B, N, C = _out_fea.shape
if start_idx == 0:
output_cls = _out_cls
output_fea = _out_fea.reshape(B * N, C)
npatch = [N]
else:
output_cls = torch.cat((output_cls, _out_cls))
output_fea = torch.cat(
(output_fea, _out_fea.reshape(B * N, C)))
npatch.append(N)
start_idx = end_idx
return [
self.head(output_cls),
self.head_dense(output_fea), output_fea, npatch
]
else:
start_idx = 0
for end_idx in idx_crops:
_out = self.forward_features(torch.cat(x[start_idx:end_idx]))
# _out = self.forward_return_n_last_blocks(torch.cat(x[start_idx: end_idx]), 4, True)
if start_idx == 0:
output = _out
else:
output = torch.cat((output, _out))
start_idx = end_idx
# print(f'output[0] {output[0].shape}')
# Run the head forward on the concatenated features.
return [self.head(output)]
def forward_features(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
x = x + pos_embed
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
if self.norm is not None:
x = self.norm(x)
if self.use_dense_prediction:
return x[:, 0], x[:, 1:]
else:
if self.global_pool:
x = x[:, 1:, :].mean(dim=1)
return self.fc_norm(x)
else:
return x[:, 0]
def forward_feature_maps(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
x = x + pos_embed
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
if self.norm is not None:
x = self.norm(x)
return x
def interpolate_pos_encoding(self, x, pos_embed):
npatch = x.shape[1] - 1
N = pos_embed.shape[1] - 1
if npatch == N:
return pos_embed
class_emb = pos_embed[:, 0]
pos_embed = pos_embed[:, 1:]
dim = x.shape[-1]
pos_embed = nn.functional.interpolate(
pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)),
dim).permute(0, 3, 1, 2),
scale_factor=math.sqrt(npatch / N),
mode='bicubic',
)
pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_emb.unsqueeze(0), pos_embed), dim=1)
def forward_selfattention(self, x, n=1):
# n=1 return the last layer attn map; otherwise return attn maps in all layers
B, nc, w, h = x.shape
N = self.pos_embed.shape[1] - 1
x = self.patch_embed(x)
# interpolate patch embeddings
dim = x.shape[-1]
w0 = w // self.patch_embed.patch_size
h0 = h // self.patch_embed.patch_size
class_pos_embed = self.pos_embed[:, 0]
patch_pos_embed = self.pos_embed[:, 1:]
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)),
dim).permute(0, 3, 1, 2),
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
mode='bicubic',
)
if w0 != patch_pos_embed.shape[-2]:
helper = torch.zeros(h0)[None, None, None, :].repeat(
1, dim, w0 - patch_pos_embed.shape[-2], 1).to(x.device)
patch_pos_embed = torch.cat((patch_pos_embed, helper), dim=-2)
if h0 != patch_pos_embed.shape[-1]:
helper = torch.zeros(w0)[None, None, :, None].repeat(
1, dim, 1, h0 - patch_pos_embed.shape[-1]).to(x.device)
pos_embed = torch.cat((patch_pos_embed, helper), dim=-1)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
pos_embed = torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed),
dim=1)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = x + pos_embed
x = self.pos_drop(x)
if n == 1:
return self.forward_last_selfattention(x)
else:
return self.forward_all_selfattention(x)
def forward_last_selfattention(self, x):
for i, blk in enumerate(self.blocks):
if i < len(self.blocks) - 1:
x = blk(x)
else:
return blk(x, return_attention=True)
def forward_all_selfattention(self, x):
attn_out = []
for i, blk in enumerate(self.blocks):
x, attn = blk.forward_fea_and_attn(x)
attn_out.append(attn)
return attn_out
def forward_return_n_last_blocks(self,
x,
n=1,
return_patch_avgpool=False,
depths=[]):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
x = x + pos_embed
x = self.pos_drop(x)
# we will return the [CLS] tokens from the `n` last blocks
output = []
for i, blk in enumerate(self.blocks):
x = blk(x)
if len(self.blocks) - i <= n:
output.append(self.norm(x)[:, 0])
if return_patch_avgpool:
x = self.norm(x)
# In addition to the [CLS] tokens from the `n` last blocks, we also return
# the patch tokens from the last block. This is useful for linear eval.
output.append(torch.mean(x[:, 1:], dim=1))
return torch.cat(output, dim=-1)
def dynamic_deit_tiny_p16(patch_size=16, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=192,
depth=12,
num_heads=3,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
return model
def dynamic_deit_small_p16(patch_size=16, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=384,
depth=12,
num_heads=6,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
return model
def dynamic_vit_base_p16(patch_size=16, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
return model
def dynamic_vit_large_p16(patch_size=16, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
return model
def dynamic_vit_huge_p14(patch_size=14, **kwargs):
model = VisionTransformer(
patch_size=patch_size,
embed_dim=1280,
depth=32,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
return model