EasyCV/configs/metric_learning/cub_resnet50_jpg.py
Chen Jiayu 3ee118f065
Expand cls model zoo (#55)
1. expand cls model zoo
2. uniform load_pretrained
2022-06-01 11:01:29 +08:00

107 lines
3.0 KiB
Python

_base_ = 'configs/base.py'
log_config = dict(
interval=1,
hooks=[dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')])
# model settings
model = dict(
type='Classification',
backbone=dict(
type='ResNet',
depth=50,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='SyncBN')),
head=dict(
type='MpMetrixHead',
with_avg_pool=True,
in_channels=2048,
loss_config=[{
'type': 'ModelParallelAMSoftmaxLoss',
'embedding_size': 2048,
'num_classes': 200, # if CUDA out of memory, reduce num_classes.
'norm': False,
'ddp': True,
}],
input_feature_index=[0]))
data_root = 'data/cub200/'
ann_file = data_root + 'images.txt'
image_class_labels_file = data_root + 'image_class_labels.txt'
train_test_split_file = data_root + 'train_test_split.txt'
data_prefix = data_root + 'images'
dataset_type = 'ClsDataset'
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_pipeline = [
dict(type='RandomResizedCrop', size=224),
dict(type='RandomHorizontalFlip'),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img', 'gt_labels'])
]
test_pipeline = [
dict(type='Resize', size=256),
dict(type='CenterCrop', size=224),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img', 'gt_labels'])
]
data = dict(
imgs_per_gpu=32,
workers_per_gpu=4,
train=dict(
type=dataset_type,
data_source=dict(
ann_file=ann_file,
image_class_labels_file=image_class_labels_file,
train_test_split_file=train_test_split_file,
data_prefix=data_prefix,
test_mode=False,
type='ClsSourceCUB'),
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_source=dict(
ann_file=ann_file,
image_class_labels_file=image_class_labels_file,
train_test_split_file=train_test_split_file,
data_prefix=data_prefix,
test_mode=True,
type='ClsSourceCUB'),
pipeline=test_pipeline))
eval_config = dict(interval=1)
eval_pipelines = [
dict(
mode='extract',
dist_eval=True,
data=data['val'],
evaluators=[
dict(
type='RetrivalTopKEvaluator',
topk=(1, 2, 4, 8),
metric_names=('R@K=1', 'R@K=8'))
],
)
]
# additional hooks
custom_hooks = []
# optimizer
optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0001)
# learning policy
lr_config = dict(policy='step', step=[30, 60, 90])
checkpoint_config = dict(interval=10)
# runtime settings
total_epochs = 90
# export config
export = dict(export_neck=True)
load_from = 'http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/classification/resnet/resnet50/epoch_100.pth'