EasyCV/easycv/models/backbones/efficientformer.py

489 lines
15 KiB
Python

# Copyright (c) 2022 Snap Inc. All rights reserved.
import itertools
import os
import torch
import torch.nn as nn
from timm.models.layers import DropPath, trunc_normal_
from timm.models.layers.helpers import to_2tuple
from ..modelzoo import efficientformer as model_urls
from ..registry import BACKBONES
class Attention(torch.nn.Module):
def __init__(self,
dim=384,
key_dim=32,
num_heads=8,
attn_ratio=4,
resolution=7):
super().__init__()
self.num_heads = num_heads
self.scale = key_dim**-0.5
self.key_dim = key_dim
self.nh_kd = nh_kd = key_dim * num_heads
self.d = int(attn_ratio * key_dim)
self.dh = int(attn_ratio * key_dim) * num_heads
self.attn_ratio = attn_ratio
h = self.dh + nh_kd * 2
self.qkv = nn.Linear(dim, h)
self.proj = nn.Linear(self.dh, dim)
points = list(itertools.product(range(resolution), range(resolution)))
N = len(points)
attention_offsets = {}
idxs = []
for p1 in points:
for p2 in points:
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = torch.nn.Parameter(
torch.zeros(num_heads, len(attention_offsets)))
self.register_buffer('attention_bias_idxs',
torch.LongTensor(idxs).view(N, N))
@torch.no_grad()
def train(self, mode=True):
super().train(mode)
if mode and hasattr(self, 'ab'):
del self.ab
else:
self.ab = self.attention_biases[:, self.attention_bias_idxs]
def forward(self, x): # x (B,N,C)
B, N, C = x.shape
qkv = self.qkv(x)
q, k, v = qkv.reshape(B, N, self.num_heads,
-1).split([self.key_dim, self.key_dim, self.d],
dim=3)
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
attn = ((q @ k.transpose(-2, -1)) * self.scale +
(self.attention_biases[:, self.attention_bias_idxs]
if self.training else self.ab))
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh)
x = self.proj(x)
return x
def stem(in_chs, out_chs):
return nn.Sequential(
nn.Conv2d(in_chs, out_chs // 2, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(out_chs // 2),
nn.ReLU(),
nn.Conv2d(out_chs // 2, out_chs, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(out_chs),
nn.ReLU(),
)
class Embedding(nn.Module):
"""
Patch Embedding that is implemented by a layer of conv.
Input: tensor in shape [B, C, H, W]
Output: tensor in shape [B, C, H/stride, W/stride]
"""
def __init__(self,
patch_size=16,
stride=16,
padding=0,
in_chans=3,
embed_dim=768,
norm_layer=nn.BatchNorm2d):
super().__init__()
patch_size = to_2tuple(patch_size)
stride = to_2tuple(stride)
padding = to_2tuple(padding)
self.proj = nn.Conv2d(
in_chans,
embed_dim,
kernel_size=patch_size,
stride=stride,
padding=padding)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
x = self.proj(x)
x = self.norm(x)
return x
class Flat(nn.Module):
def __init__(self, ):
super().__init__()
def forward(self, x):
x = x.flatten(2).transpose(1, 2)
return x
class Pooling(nn.Module):
"""
Implementation of pooling for PoolFormer
--pool_size: pooling size
"""
def __init__(self, pool_size=3):
super().__init__()
self.pool = nn.AvgPool2d(
pool_size,
stride=1,
padding=pool_size // 2,
count_include_pad=False)
def forward(self, x):
return self.pool(x) - x
class LinearMlp(nn.Module):
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
"""
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.drop1 = nn.Dropout(drop)
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop2 = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop1(x)
x = self.fc2(x)
x = self.drop2(x)
return x
class Mlp(nn.Module):
"""
Implementation of MLP with 1*1 convolutions.
Input: tensor with shape [B, C, H, W]
"""
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
self.act = act_layer()
self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
self.drop = nn.Dropout(drop)
self.apply(self._init_weights)
self.norm1 = nn.BatchNorm2d(hidden_features)
self.norm2 = nn.BatchNorm2d(out_features)
def _init_weights(self, m):
if isinstance(m, nn.Conv2d):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
x = self.fc1(x)
x = self.norm1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.norm2(x)
x = self.drop(x)
return x
class Meta3D(nn.Module):
def __init__(self,
dim,
mlp_ratio=4.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
drop=0.,
drop_path=0.,
use_layer_scale=True,
layer_scale_init_value=1e-5):
super().__init__()
self.norm1 = norm_layer(dim)
self.token_mixer = Attention(dim)
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = LinearMlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. \
else nn.Identity()
self.use_layer_scale = use_layer_scale
if use_layer_scale:
self.layer_scale_1 = nn.Parameter(
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
self.layer_scale_2 = nn.Parameter(
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
def forward(self, x):
if self.use_layer_scale:
x = x + self.drop_path(
self.layer_scale_1.unsqueeze(0).unsqueeze(0) *
self.token_mixer(self.norm1(x)))
x = x + self.drop_path(
self.layer_scale_2.unsqueeze(0).unsqueeze(0) *
self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.token_mixer(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class Meta4D(nn.Module):
def __init__(self,
dim,
pool_size=3,
mlp_ratio=4.,
act_layer=nn.GELU,
drop=0.,
drop_path=0.,
use_layer_scale=True,
layer_scale_init_value=1e-5):
super().__init__()
self.token_mixer = Pooling(pool_size=pool_size)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. \
else nn.Identity()
self.use_layer_scale = use_layer_scale
if use_layer_scale:
self.layer_scale_1 = nn.Parameter(
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
self.layer_scale_2 = nn.Parameter(
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
def forward(self, x):
if self.use_layer_scale:
x = x + self.drop_path(
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) *
self.token_mixer(x))
x = x + self.drop_path(
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(x))
else:
x = x + self.drop_path(self.token_mixer(x))
x = x + self.drop_path(self.mlp(x))
return x
def meta_blocks(dim,
index,
layers,
pool_size=3,
mlp_ratio=4.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
drop_rate=.0,
drop_path_rate=0.,
use_layer_scale=True,
layer_scale_init_value=1e-5,
vit_num=1):
blocks = []
if index == 3 and vit_num == layers[index]:
blocks.append(Flat())
for block_idx in range(layers[index]):
block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (
sum(layers) - 1)
if index == 3 and layers[index] - block_idx <= vit_num:
blocks.append(
Meta3D(
dim,
mlp_ratio=mlp_ratio,
act_layer=act_layer,
norm_layer=norm_layer,
drop=drop_rate,
drop_path=block_dpr,
use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value,
))
else:
blocks.append(
Meta4D(
dim,
pool_size=pool_size,
mlp_ratio=mlp_ratio,
act_layer=act_layer,
drop=drop_rate,
drop_path=block_dpr,
use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value,
))
if index == 3 and layers[index] - block_idx - 1 == vit_num:
blocks.append(Flat())
blocks = nn.Sequential(*blocks)
return blocks
@BACKBONES.register_module
class EfficientFormer(nn.Module):
def __init__(self,
layers,
embed_dims=None,
mlp_ratios=4,
downsamples=None,
pool_size=3,
norm_layer=nn.LayerNorm,
act_layer=nn.GELU,
num_classes=1000,
down_patch_size=3,
down_stride=2,
down_pad=1,
drop_rate=0.,
drop_path_rate=0.,
use_layer_scale=True,
layer_scale_init_value=1e-5,
fork_feat=False,
vit_num=0,
distillation=True,
**kwargs):
super().__init__()
if not fork_feat:
self.num_classes = num_classes
self.fork_feat = fork_feat
self.patch_embed = stem(3, embed_dims[0])
network = []
for i in range(len(layers)):
stage = meta_blocks(
embed_dims[i],
i,
layers,
pool_size=pool_size,
mlp_ratio=mlp_ratios,
act_layer=act_layer,
norm_layer=norm_layer,
drop_rate=drop_rate,
drop_path_rate=drop_path_rate,
use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value,
vit_num=vit_num)
network.append(stage)
if i >= len(layers) - 1:
break
if downsamples[i] or embed_dims[i] != embed_dims[i + 1]:
# downsampling between two stages
network.append(
Embedding(
patch_size=down_patch_size,
stride=down_stride,
padding=down_pad,
in_chans=embed_dims[i],
embed_dim=embed_dims[i + 1]))
self.network = nn.ModuleList(network)
if self.fork_feat:
# add a norm layer for each output
self.out_indices = [0, 2, 4, 6]
for i_emb, i_layer in enumerate(self.out_indices):
if i_emb == 0 and os.environ.get('FORK_LAST3', None):
layer = nn.Identity()
else:
layer = norm_layer(embed_dims[i_emb])
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
else:
# Classifier head
self.norm = norm_layer(embed_dims[-1])
self.head = nn.Linear(
embed_dims[-1], num_classes) if num_classes > 0 \
else nn.Identity()
self.dist = distillation
if self.dist:
self.dist_head = nn.Linear(
embed_dims[-1], num_classes) if num_classes > 0 \
else nn.Identity()
suffix_dict = {1: 'l1', 4: 'l3', 8: 'l7'}
self.default_pretrained_model_path = model_urls.get(
self.__class__.__name__ + '_' + suffix_dict[vit_num], None)
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward_tokens(self, x):
outs = []
for idx, block in enumerate(self.network):
x = block(x)
if self.fork_feat and idx in self.out_indices:
norm_layer = getattr(self, f'norm{idx}')
if len(x.shape) == 4:
x = x.permute(0, 2, 3, 1)
x_out = norm_layer(x)
x = x.permute(0, 3, 1, 2).contiguous()
else:
x_out = norm_layer(x)
outs.append(x_out)
if self.fork_feat:
return outs
return x
def forward(self, x):
x = self.patch_embed(x)
x = self.forward_tokens(x)
if self.fork_feat:
# otuput features of four stages for dense prediction
return x
x = self.norm(x)
# TODO: support kd pipeline
if self.dist:
cls_out = self.head(x.mean(-2)), self.dist_head(x.mean(-2))
cls_out = (cls_out[0] + cls_out[1]) / 2
else:
cls_out = self.head(x.mean(-2))
# for image classification
return [cls_out]