EasyCV/easycv/models/backbones/vision_transformer.py

362 lines
12 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
"""
Mostly copy-paste from timm library.
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""
from functools import partial
import torch
import torch.nn as nn
from timm.models.layers import trunc_normal_
from easycv.models.utils import DropPath, Mlp
from ..registry import BACKBONES
def hydra(q, k, v):
""" Hydra Attention
Paper link: https://arxiv.org/pdf/2209.07484.pdf (Hydra Attention: Efficient Attention with Many Heads)
Args:
q, k, and v should all be tensors of shape
[batch, tokens, features]
"""
q = q / q.norm(dim=-1, keepdim=True)
k = k / k.norm(dim=-1, keepdim=True)
kv = (k * v).sum(dim=-2, keepdim=True)
out = q * kv
return out
class Attention(nn.Module):
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.,
hydra_attention=False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.hydra_attention = hydra_attention
def forward(self, x, rel_pos_bias=None):
B, N, C = x.shape
if self.hydra_attention:
qkv = self.qkv(x).reshape(B, N, 3,
self.num_heads).permute(2, 0, 1, 3)
q, k, v = qkv[0], qkv[1], qkv[2]
x = hydra(q, k, v)
x = x.reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x, None
else:
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
C // self.num_heads).permute(
2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
if rel_pos_bias is not None:
attn = attn + rel_pos_bias
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x, attn
class Block(nn.Module):
def __init__(self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
use_layer_scale=False,
init_values=1e-4,
hydra_attention=False):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
hydra_attention=hydra_attention)
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
self.use_layer_scale = use_layer_scale
if self.use_layer_scale:
self.gamma_1 = nn.Parameter(
init_values * torch.ones((dim)), requires_grad=True)
self.gamma_2 = nn.Parameter(
init_values * torch.ones((dim)), requires_grad=True)
def forward(self, x, return_attention=False, rel_pos_bias=None):
y, attn = self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)
if return_attention:
return attn
if self.use_layer_scale:
x = x + self.drop_path(self.gamma_1 * y)
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(y)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
def forward_fea_and_attn(self, x):
y, attn = self.attn(self.norm1(x))
if self.use_layer_scale:
x = x + self.drop_path(self.gamma_1 * y)
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(y)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x, attn
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
num_patches = (img_size // patch_size) * (img_size // patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x).flatten(2).transpose(1, 2)
return x
@BACKBONES.register_module
class VisionTransformer(nn.Module):
""" DeiT III is based on ViT. It uses some strategies to make the vit model
better, just like layer scale, stochastic depth, 3-Augment.
Paper link: https://arxiv.org/pdf/2204.07118.pdf (DeiT III: Revenge of the ViT)
Args:
img_size (list): Input image size. img_size=[224] means the image size is
224*224. img_size=[192, 224] means the image size is 192*224.
patch_size (int): The patch size. Default: 16
in_chans (int): The num of input channels. Default: 3
num_classes (int): The num of picture classes. Default: 1000
embed_dim (int): The dimensions of embedding. Default: 768
depth (int): The num of blocks. Default: 12
num_heads (int): Parallel attention heads. Default: 12
mlp_ratio (float): Mlp expansion ratio. Default: 4.0
qkv_bias (bool): Does kqv use bias. Default: False
qk_scale (float | None): In the step of self-attention, if qk_scale is not
None, it will use qk_scale to scale the q @ k. Otherwise it will use
head_dim**-0.5 instead of qk_scale. Default: None
drop_rate (float): Probability of an element to be zeroed after the feed
forward layer. Default: 0.0
drop_path_rate (float): Stochastic depth rate. Default: 0
norm_layer (nn.Module): normalization layer
global_pool (bool): Global pool before head. Default: False
use_layer_scale (bool): If use_layer_scale is True, it will use layer
scale. Default: False
init_scale (float): It is used for layer scale in Block to scale the
gamma_1 and gamma_2.
hydra_attention (bool): If hydra_attention is True, it will use Hydra
Attention. Default: False
hydra_attention_layers (int | None): The number of layers that use Hydra Attention.
If it is None and hydra_attention is True, it will be equal to depth.
Default: None
use_dpr_linspace (bool): If use_dpr_linspace is False, all block's drop_path_rate
are the same. Otherwise, it will use "torch.linspace" on drop_path_rate.
Default: True
"""
def __init__(self,
img_size=[224],
patch_size=16,
in_chans=3,
num_classes=1000,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
global_pool=False,
use_layer_scale=False,
init_scale=1e-4,
hydra_attention=False,
hydra_attention_layers=None,
use_dpr_linspace=True,
**kwargs):
super().__init__()
if hydra_attention:
if hydra_attention_layers is None:
hydra_attention_layers = depth
elif hydra_attention_layers > depth:
raise ValueError(
'When using Hydra Attention, hydra_attention_Layers must be smaller than or equal to depth.'
)
self.num_features = self.embed_dim = embed_dim
self.num_heads = num_heads
self.mlp_ratio = mlp_ratio
self.qkv_bias = qkv_bias
self.qk_scale = qk_scale
self.drop_rate = drop_rate
self.attn_drop_rate = attn_drop_rate
self.norm_layer = norm_layer
self.use_layer_scale = use_layer_scale
self.init_scale = init_scale
self.hydra_attention = hydra_attention
self.hydra_attention_layers = hydra_attention_layers
self.drop_path_rate = drop_path_rate
self.depth = depth
self.patch_embed = PatchEmbed(
img_size=img_size[0],
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
if use_dpr_linspace:
dpr = [
x.item()
for x in torch.linspace(0, self.drop_path_rate, self.depth)
]
else:
dpr = [drop_path_rate for x in range(self.depth)]
self.dpr = dpr
if self.hydra_attention:
hy = [
x >= (self.depth - self.hydra_attention_layers)
for x in range(self.depth)
]
head = [
self.embed_dim if x >=
(self.depth - self.hydra_attention_layers) else self.num_heads
for x in range(self.depth)
]
else:
hy = [False for x in range(self.depth)]
head = [self.num_heads for x in range(self.depth)]
self.blocks = nn.ModuleList([
Block(
dim=embed_dim,
num_heads=head[i],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
use_layer_scale=use_layer_scale,
init_values=init_scale,
hydra_attention=hy[i]) for i in range(depth)
])
self.norm = norm_layer(embed_dim)
# Classifier head
self.head = nn.Linear(
embed_dim, num_classes) if num_classes > 0 else nn.Identity()
# Use global average pooling
self.global_pool = global_pool
if self.global_pool:
self.fc_norm = norm_layer(embed_dim)
self.norm = None
def init_weights(self):
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
for m in self.modules():
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x):
x = self.forward_features(x)
x = self.pos_drop(x)
x = self.head(x)
return [x]
def forward_features(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = x + self.pos_embed
x = torch.cat((cls_tokens, x), dim=1)
for blk in self.blocks:
x = blk(x)
if self.norm is not None:
x = self.norm(x)
if self.global_pool:
x = x[:, 1:, :].mean(dim=1)
return self.fc_norm(x)
else:
return x[:, 0]