EasyCV/easycv/models/backbones/vit_transformer_dynamic.py

329 lines
11 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
"""
Mostly copy-paste from timm library.
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
dynamic Input support borrow from
https://github.com/microsoft/esvit/blob/main/models/vision_transformer.py
"""
import math
from functools import partial
import torch
import torch.nn as nn
from easycv.models.backbones.vision_transformer import Block, VisionTransformer
class DynamicVisionTransformer(VisionTransformer):
"""Dynamic Vision Transformer
Args:
use_dense_prediction (bool): If use_dense_prediction is True, the global
pool and norm will before head will be removed.(if any) Default: False
"""
def __init__(self, use_dense_prediction=False, **kwargs):
super(DynamicVisionTransformer, self).__init__(**kwargs)
num_patches = self.patch_embed.num_patches
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches + 1, self.embed_dim))
if self.hydra_attention:
hy = [
x >= (self.depth - self.hydra_attention_layers)
for x in range(self.depth)
]
head = [
self.embed_dim if x >=
(self.depth - self.hydra_attention_layers) else self.num_heads
for x in range(self.depth)
]
else:
hy = [False for x in range(self.depth)]
head = [self.num_heads for x in range(self.depth)]
self.blocks = nn.ModuleList([
Block(
dim=self.embed_dim,
num_heads=head[i],
mlp_ratio=self.mlp_ratio,
qkv_bias=self.qkv_bias,
qk_scale=self.qk_scale,
drop=self.drop_rate,
attn_drop=self.attn_drop_rate,
drop_path=self.dpr[i],
norm_layer=self.norm_layer,
use_layer_scale=self.use_layer_scale,
init_values=self.init_scale,
hydra_attention=hy[i]) for i in range(self.depth)
])
# Dense prediction head
self.use_dense_prediction = use_dense_prediction
if self.use_dense_prediction:
self.head_dense = None
def forward(self, x):
# convert to list
if not isinstance(x, list):
x = [x]
# Perform forward pass separately on each resolution input.
# The inputs corresponding to a single resolution are clubbed and single
# forward is run on the same resolution inputs. Hence we do several
# forward passes = number of different resolutions used. We then
# concatenate all the output features.
idx_crops = torch.cumsum(
torch.unique_consecutive(
torch.tensor([inp.shape[-1] for inp in x]),
return_counts=True,
)[1], 0)
if self.use_dense_prediction:
start_idx = 0
for end_idx in idx_crops:
_out_cls, _out_fea = self.forward_features(
torch.cat(x[start_idx:end_idx]))
B, N, C = _out_fea.shape
if start_idx == 0:
output_cls = _out_cls
output_fea = _out_fea.reshape(B * N, C)
npatch = [N]
else:
output_cls = torch.cat((output_cls, _out_cls))
output_fea = torch.cat(
(output_fea, _out_fea.reshape(B * N, C)))
npatch.append(N)
start_idx = end_idx
return [
self.head(output_cls),
self.head_dense(output_fea), output_fea, npatch
]
else:
start_idx = 0
for end_idx in idx_crops:
_out = self.forward_features(torch.cat(x[start_idx:end_idx]))
# _out = self.forward_return_n_last_blocks(torch.cat(x[start_idx: end_idx]), 4, True)
if start_idx == 0:
output = _out
else:
output = torch.cat((output, _out))
start_idx = end_idx
# print(f'output[0] {output[0].shape}')
# Run the head forward on the concatenated features.
return [self.head(output)]
def forward_features(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
x = x + pos_embed
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
if self.norm is not None:
x = self.norm(x)
if self.use_dense_prediction:
return x[:, 0], x[:, 1:]
else:
if self.global_pool:
x = x[:, 1:, :].mean(dim=1)
return self.fc_norm(x)
else:
return x[:, 0]
def forward_feature_maps(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
x = x + pos_embed
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
if self.norm is not None:
x = self.norm(x)
return x
def interpolate_pos_encoding(self, x, pos_embed):
npatch = x.shape[1] - 1
N = pos_embed.shape[1] - 1
if npatch == N:
return pos_embed
class_emb = pos_embed[:, 0]
pos_embed = pos_embed[:, 1:]
dim = x.shape[-1]
pos_embed = nn.functional.interpolate(
pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)),
dim).permute(0, 3, 1, 2),
scale_factor=math.sqrt(npatch / N),
mode='bicubic',
)
pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_emb.unsqueeze(0), pos_embed), dim=1)
def forward_selfattention(self, x, n=1):
# n=1 return the last layer attn map; otherwise return attn maps in all layers
B, nc, w, h = x.shape
N = self.pos_embed.shape[1] - 1
x = self.patch_embed(x)
# interpolate patch embeddings
dim = x.shape[-1]
w0 = w // self.patch_embed.patch_size
h0 = h // self.patch_embed.patch_size
class_pos_embed = self.pos_embed[:, 0]
patch_pos_embed = self.pos_embed[:, 1:]
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)),
dim).permute(0, 3, 1, 2),
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
mode='bicubic',
)
if w0 != patch_pos_embed.shape[-2]:
helper = torch.zeros(h0)[None, None, None, :].repeat(
1, dim, w0 - patch_pos_embed.shape[-2], 1).to(x.device)
patch_pos_embed = torch.cat((patch_pos_embed, helper), dim=-2)
if h0 != patch_pos_embed.shape[-1]:
helper = torch.zeros(w0)[None, None, :, None].repeat(
1, dim, 1, h0 - patch_pos_embed.shape[-1]).to(x.device)
pos_embed = torch.cat((patch_pos_embed, helper), dim=-1)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
pos_embed = torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed),
dim=1)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = x + pos_embed
x = self.pos_drop(x)
if n == 1:
return self.forward_last_selfattention(x)
else:
return self.forward_all_selfattention(x)
def forward_last_selfattention(self, x):
for i, blk in enumerate(self.blocks):
if i < len(self.blocks) - 1:
x = blk(x)
else:
return blk(x, return_attention=True)
def forward_all_selfattention(self, x):
attn_out = []
for i, blk in enumerate(self.blocks):
x, attn = blk.forward_fea_and_attn(x)
attn_out.append(attn)
return attn_out
def forward_return_n_last_blocks(self,
x,
n=1,
return_patch_avgpool=False,
depths=[]):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
x = x + pos_embed
x = self.pos_drop(x)
# we will return the [CLS] tokens from the `n` last blocks
output = []
for i, blk in enumerate(self.blocks):
x = blk(x)
if len(self.blocks) - i <= n:
output.append(self.norm(x)[:, 0])
if return_patch_avgpool:
x = self.norm(x)
# In addition to the [CLS] tokens from the `n` last blocks, we also return
# the patch tokens from the last block. This is useful for linear eval.
output.append(torch.mean(x[:, 1:], dim=1))
return torch.cat(output, dim=-1)
def dynamic_deit_tiny_p16(patch_size=16, **kwargs):
model = DynamicVisionTransformer(
patch_size=patch_size,
embed_dim=192,
depth=12,
num_heads=3,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
return model
def dynamic_deit_small_p16(patch_size=16, **kwargs):
model = DynamicVisionTransformer(
patch_size=patch_size,
embed_dim=384,
depth=12,
num_heads=6,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
return model
def dynamic_vit_base_p16(patch_size=16, **kwargs):
model = DynamicVisionTransformer(
patch_size=patch_size,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
return model
def dynamic_vit_large_p16(patch_size=16, **kwargs):
model = DynamicVisionTransformer(
patch_size=patch_size,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
return model
def dynamic_vit_huge_p14(patch_size=14, **kwargs):
model = DynamicVisionTransformer(
patch_size=patch_size,
embed_dim=1280,
depth=32,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
return model