EasyCV/tests/tools/test_classification_train.py

106 lines
3.2 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import copy
import logging
import os
import sys
import tempfile
import unittest
from mmcv import Config
from tests.ut_config import SMALL_IMAGENET_RAW_LOCAL
from easycv.file import io
from easycv.utils.test_util import run_in_subprocess
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
logging.basicConfig(level=logging.INFO)
SMALL_IMAGENET_DATA_ROOT = SMALL_IMAGENET_RAW_LOCAL + '/'
_COMMON_OPTIONS = {
'checkpoint_config.interval': 1,
'total_epochs': 1,
'data.imgs_per_gpu': 8,
'model.backbone.norm_cfg.type': 'BN'
}
TRAIN_CONFIGS = [{
'config_file':
'configs/classification/imagenet/resnet/imagenet_resnet50_jpg.py',
'cfg_options': {
**_COMMON_OPTIONS,
'data.train.data_source.root':
SMALL_IMAGENET_DATA_ROOT + 'train/',
'data.train.data_source.list_file':
SMALL_IMAGENET_DATA_ROOT + 'meta/train_labeled_200.txt',
'data.val.data_source.root':
SMALL_IMAGENET_DATA_ROOT + 'validation/',
'data.val.data_source.list_file':
SMALL_IMAGENET_DATA_ROOT + 'meta/val_labeled_100.txt',
}
}, {
'config_file':
'configs/classification/imagenet/resnet/imagenet_resnet50_jpg.py',
'cfg_options': {
**_COMMON_OPTIONS, 'data.train.data_source.root':
SMALL_IMAGENET_DATA_ROOT + 'train/',
'data.train.data_source.list_file':
SMALL_IMAGENET_DATA_ROOT + 'meta/train_labeled_200.txt',
'data.val.data_source.root':
SMALL_IMAGENET_DATA_ROOT + 'validation/',
'data.val.data_source.list_file':
SMALL_IMAGENET_DATA_ROOT + 'meta/val_labeled_100.txt',
'model.train_preprocess': ['randomErasing', 'mixUp']
}
}]
class ClassificationTrainTest(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
def tearDown(self):
super().tearDown()
def _base_train(self, train_cfgs):
cfg_file = train_cfgs.pop('config_file')
cfg_options = train_cfgs.pop('cfg_options', None)
work_dir = train_cfgs.pop('work_dir', None)
if not work_dir:
work_dir = tempfile.TemporaryDirectory().name
cfg = Config.fromfile(cfg_file)
if cfg_options is not None:
cfg.merge_from_dict(cfg_options)
cfg.eval_pipelines[0].data = cfg.data.val
tmp_cfg_file = tempfile.NamedTemporaryFile(suffix='.py').name
cfg.dump(tmp_cfg_file)
args_str = ' '.join(
['='.join((str(k), str(v))) for k, v in train_cfgs.items()])
cmd = 'python tools/train.py %s --work_dir=%s %s --fp16' % \
(tmp_cfg_file, work_dir, args_str)
logging.info('run command: %s' % cmd)
run_in_subprocess(cmd)
output_files = io.listdir(work_dir)
self.assertIn('epoch_1.pth', output_files)
io.remove(work_dir)
io.remove(tmp_cfg_file)
def test_classification(self):
train_cfgs = copy.deepcopy(TRAIN_CONFIGS[0])
self._base_train(train_cfgs)
def test_classification_mixup(self):
train_cfgs = copy.deepcopy(TRAIN_CONFIGS[1])
self._base_train(train_cfgs)
if __name__ == '__main__':
unittest.main()