yhq 397ecf2658
Feature/paddleocr inference (#148)
* add ocr model and convert weights from paddleocrv3
2022-09-28 14:03:16 +08:00

273 lines
9.5 KiB
Python

# Modified from https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.6/ppocr/metrics
import string
from collections import namedtuple
import numpy as np
from rapidfuzz.distance import Levenshtein
from shapely.geometry import Polygon
from .base_evaluator import Evaluator
from .builder import EVALUATORS
from .metric_registry import METRICS
@EVALUATORS.register_module()
class OCRDetEvaluator(Evaluator):
def __init__(self, dataset_name=None, metric_names=['hmean']):
self.iou_constraint = 0.5
self.area_precision_constraint = 0.5
super().__init__(dataset_name, metric_names)
def _evaluate_impl(self, gt, pred):
def get_union(pD, pG):
return Polygon(pD).union(Polygon(pG)).area
def get_intersection_over_union(pD, pG):
return get_intersection(pD, pG) / get_union(pD, pG)
def get_intersection(pD, pG):
return Polygon(pD).intersection(Polygon(pG)).area
def compute_ap(confList, matchList, numGtCare):
correct = 0
AP = 0
if len(confList) > 0:
confList = np.array(confList)
matchList = np.array(matchList)
sorted_ind = np.argsort(-confList)
confList = confList[sorted_ind]
matchList = matchList[sorted_ind]
for n in range(len(confList)):
match = matchList[n]
if match:
correct += 1
AP += float(correct) / (n + 1)
if numGtCare > 0:
AP /= numGtCare
return AP
perSampleMetrics = {}
matchedSum = 0
Rectangle = namedtuple('Rectangle', 'xmin ymin xmax ymax')
numGlobalCareGt = 0
numGlobalCareDet = 0
arrGlobalConfidences = []
arrGlobalMatches = []
recall = 0
precision = 0
hmean = 0
detMatched = 0
iouMat = np.empty([1, 1])
gtPols = []
detPols = []
gtPolPoints = []
detPolPoints = []
# Array of Ground Truth Polygons' keys marked as don't Care
gtDontCarePolsNum = []
# Array of Detected Polygons' matched with a don't Care GT
detDontCarePolsNum = []
pairs = []
detMatchedNums = []
arrSampleConfidences = []
arrSampleMatch = []
evaluationLog = ''
for n in range(len(gt)):
points = gt[n]['points']
# transcription = gt[n]['text']
dontCare = gt[n]['ignore']
# points = Polygon(points)
# points = points.buffer(0)
if not Polygon(points).is_valid or not Polygon(points).is_simple:
continue
gtPol = points
gtPols.append(gtPol)
gtPolPoints.append(points)
if dontCare:
gtDontCarePolsNum.append(len(gtPols) - 1)
evaluationLog += 'GT polygons: ' + str(len(gtPols)) + (
' (' + str(len(gtDontCarePolsNum)) +
" don't care)\n" if len(gtDontCarePolsNum) > 0 else '\n')
for n in range(len(pred)):
points = pred[n]['points']
# points = Polygon(points)
# points = points.buffer(0)
if not Polygon(points).is_valid or not Polygon(points).is_simple:
continue
detPol = points
detPols.append(detPol)
detPolPoints.append(points)
if len(gtDontCarePolsNum) > 0:
for dontCarePol in gtDontCarePolsNum:
dontCarePol = gtPols[dontCarePol]
intersected_area = get_intersection(dontCarePol, detPol)
pdDimensions = Polygon(detPol).area
precision = 0 if pdDimensions == 0 else intersected_area / pdDimensions
if (precision > self.area_precision_constraint):
detDontCarePolsNum.append(len(detPols) - 1)
break
evaluationLog += 'DET polygons: ' + str(len(detPols)) + (
' (' + str(len(detDontCarePolsNum)) +
" don't care)\n" if len(detDontCarePolsNum) > 0 else '\n')
if len(gtPols) > 0 and len(detPols) > 0:
# Calculate IoU and precision matrixs
outputShape = [len(gtPols), len(detPols)]
iouMat = np.empty(outputShape)
gtRectMat = np.zeros(len(gtPols), np.int8)
detRectMat = np.zeros(len(detPols), np.int8)
for gtNum in range(len(gtPols)):
for detNum in range(len(detPols)):
pG = gtPols[gtNum]
pD = detPols[detNum]
iouMat[gtNum, detNum] = get_intersection_over_union(pD, pG)
for gtNum in range(len(gtPols)):
for detNum in range(len(detPols)):
if gtRectMat[gtNum] == 0 and detRectMat[
detNum] == 0 and gtNum not in gtDontCarePolsNum and detNum not in detDontCarePolsNum:
if iouMat[gtNum, detNum] > self.iou_constraint:
gtRectMat[gtNum] = 1
detRectMat[detNum] = 1
detMatched += 1
pairs.append({'gt': gtNum, 'det': detNum})
detMatchedNums.append(detNum)
evaluationLog += 'Match GT #' + \
str(gtNum) + ' with Det #' + str(detNum) + '\n'
numGtCare = (len(gtPols) - len(gtDontCarePolsNum))
numDetCare = (len(detPols) - len(detDontCarePolsNum))
if numGtCare == 0:
recall = float(1)
precision = float(0) if numDetCare > 0 else float(1)
else:
recall = float(detMatched) / numGtCare
precision = 0 if numDetCare == 0 else float(
detMatched) / numDetCare
hmean = 0 if (precision +
recall) == 0 else 2.0 * precision * recall / (
precision + recall)
matchedSum += detMatched
numGlobalCareGt += numGtCare
numGlobalCareDet += numDetCare
perSampleMetrics = {
'gtCare': numGtCare,
'detCare': numDetCare,
'detMatched': detMatched,
}
return perSampleMetrics
def combine_results(self, results):
numGlobalCareGt = 0
numGlobalCareDet = 0
matchedSum = 0
for result in results:
numGlobalCareGt += result['gtCare']
numGlobalCareDet += result['detCare']
matchedSum += result['detMatched']
methodRecall = 0 if numGlobalCareGt == 0 else float(
matchedSum) / numGlobalCareGt
methodPrecision = 0 if numGlobalCareDet == 0 else float(
matchedSum) / numGlobalCareDet
methodHmean = 0 if methodRecall + methodPrecision == 0 else 2 * methodRecall * methodPrecision / (
methodRecall + methodPrecision)
# print(methodRecall, methodPrecision, methodHmean)
# sys.exit(-1)
methodMetrics = {
'precision': methodPrecision,
'recall': methodRecall,
'hmean': methodHmean
}
return methodMetrics
def evaluate(self, preds, gt_polyons_batch, ignore_tags_batch, **kwargs):
results = []
for pred, gt_polyons, ignore_tags in zip(preds, gt_polyons_batch,
ignore_tags_batch):
# prepare gt
gt_info_list = [{
'points': gt_polyon,
'text': '',
'ignore': ignore_tag
} for gt_polyon, ignore_tag in zip(gt_polyons, ignore_tags)]
# prepare det
det_info_list = [{
'points': det_polyon,
'text': ''
} for det_polyon in pred]
result = self._evaluate_impl(gt_info_list, det_info_list)
results.append(result)
results = self.combine_results(results)
return results
@EVALUATORS.register_module()
class OCRRecEvaluator(Evaluator):
def __init__(self,
is_filter=False,
ignore_space=True,
dataset_name=None,
metric_names=['acc']):
super().__init__(dataset_name, metric_names)
self.is_filter = is_filter
self.ignore_space = ignore_space
self.eps = 1e-5
def _normalize_text(self, text):
text = ''.join(
filter(lambda x: x in (string.digits + string.ascii_letters),
text))
return text.lower()
def _evaluate_impl(self, preds, labels, **kwargs):
correct_num = 0
all_num = 0
norm_edit_dis = 0.0
for (pred, pred_conf), (target, _) in zip(preds, labels):
if self.ignore_space:
pred = pred.replace(' ', '')
target = target.replace(' ', '')
if self.is_filter:
pred = self._normalize_text(pred)
target = self._normalize_text(target)
norm_edit_dis += Levenshtein.normalized_distance(pred, target)
if pred == target:
correct_num += 1
all_num += 1
return {
'acc': correct_num / (all_num + self.eps),
'norm_edit_dis': 1 - norm_edit_dis / (all_num + self.eps)
}
METRICS.register_default_best_metric(OCRDetEvaluator, 'hmean', 'max')
METRICS.register_default_best_metric(OCRRecEvaluator, 'acc', 'max')