mirror of
https://github.com/alibaba/EasyCV.git
synced 2025-06-03 14:49:00 +08:00
* add attention layer and more loss function * add attention layer and various loss functions * add siou loss * add tah,various attention layers, and different loss functions * add asff sim, gsconv * blade utils fit faster * blade optimize for yolox static & fp16 * decode output for yolox control by cfg * add reparameterize_models for export * e2e trt_nms plugin export support and numeric test * split preprocess from end2end+blade, speedup from 17ms->7.2ms Co-authored-by: zouxinyi0625 <zouxinyi.zxy@alibaba-inc.com>
23 lines
816 B
Python
23 lines
816 B
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
from .benchmark_mlp import BenchMarkMLP
|
|
from .bninception import BNInception
|
|
from .conv_mae_vit import FastConvMAEViT
|
|
from .conv_vitdet import ConvViTDet
|
|
from .efficientformer import EfficientFormer
|
|
from .genet import PlainNet
|
|
from .hrnet import HRNet
|
|
from .inceptionv3 import Inception3
|
|
from .lighthrnet import LiteHRNet
|
|
from .mae_vit_transformer import *
|
|
from .mnasnet import MNASNet
|
|
from .mobilenetv2 import MobileNetV2
|
|
from .pytorch_image_models_wrapper import *
|
|
from .repvgg_yolox_backbone import RepVGGYOLOX
|
|
from .resnest import ResNeSt
|
|
from .resnet import ResNet
|
|
from .resnet_jit import ResNetJIT
|
|
from .resnext import ResNeXt
|
|
from .shuffle_transformer import ShuffleTransformer
|
|
from .swin_transformer_dynamic import SwinTransformer
|
|
from .vitdet import ViTDet
|