wuziheng 9aaa600f79
Yolox improve with REPConv/ASFF/TOOD (#154)
* add attention layer and more loss function

* add attention layer and various loss functions

* add siou loss

* add tah,various attention layers, and different loss functions

* add asff sim, gsconv

* blade utils fit faster

* blade optimize for yolox static & fp16

* decode output for yolox control by cfg

* add reparameterize_models for export

* e2e trt_nms plugin export support and numeric test

* split preprocess from end2end+blade, speedup from 17ms->7.2ms

Co-authored-by: zouxinyi0625 <zouxinyi.zxy@alibaba-inc.com>
2022-08-24 18:11:15 +08:00

23 lines
816 B
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
from .benchmark_mlp import BenchMarkMLP
from .bninception import BNInception
from .conv_mae_vit import FastConvMAEViT
from .conv_vitdet import ConvViTDet
from .efficientformer import EfficientFormer
from .genet import PlainNet
from .hrnet import HRNet
from .inceptionv3 import Inception3
from .lighthrnet import LiteHRNet
from .mae_vit_transformer import *
from .mnasnet import MNASNet
from .mobilenetv2 import MobileNetV2
from .pytorch_image_models_wrapper import *
from .repvgg_yolox_backbone import RepVGGYOLOX
from .resnest import ResNeSt
from .resnet import ResNet
from .resnet_jit import ResNetJIT
from .resnext import ResNeXt
from .shuffle_transformer import ShuffleTransformer
from .swin_transformer_dynamic import SwinTransformer
from .vitdet import ViTDet