EasyCV/easycv/hooks/optimizer_hook.py

184 lines
7.1 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import logging
from distutils.version import LooseVersion
import torch
from mmcv.parallel import is_module_wrapper
from mmcv.runner import OptimizerHook as _OptimizerHook
from easycv.framework.errors import TypeError
from easycv.utils.dist_utils import get_dist_info
from easycv.utils.torchacc_util import is_torchacc_enabled
if LooseVersion(torch.__version__) >= LooseVersion('1.6.0'):
from torch.cuda import amp
else:
try:
from apex import amp
except ImportError:
logging.warning(
'apex not installed, please install apex from https://www.github.com/nvidia/apex if you want to use fp16.'
)
class OptimizerHook(_OptimizerHook):
def __init__(self,
update_interval=1,
grad_clip=None,
coalesce=True,
bucket_size_mb=-1,
ignore_key=[],
ignore_key_epoch=[],
multiply_key=[],
multiply_rate=[]):
'''
ignore_key: [str,...], ignore_key[i], name of parameters, which's gradient will be set to zero before every optimizer step when epoch < ignore_key_epoch[i]
ignore_key_epoch: [int,...], epoch < ignore_key_epoch[i], ignore_key[i]'s gradient will be set to zero.
multiply_key:[str,...] multiply_key[i], name of parameters, which will set different learning rate ratio by multipy_rate
multiply_rate:[float,...] multiply_rate[i], different ratio
'''
self.grad_clip = grad_clip
self.coalesce = coalesce
self.bucket_size_mb = bucket_size_mb
self.update_interval = update_interval
self.ignore_key = ignore_key
self.ignore_key_epoch = ignore_key_epoch
self.multiply_key = multiply_key
self.multiply_rate = multiply_rate
def _get_module(self, runner):
module = runner.model
if is_module_wrapper(module):
module = module.module
return module
def skip_ignore_key(self, runner):
module = self._get_module(runner)
for name, p in module.named_parameters():
for k, epoch in zip(self.ignore_key, self.ignore_key_epoch):
if k in name and runner.epoch < epoch:
p.grad = None
def multiply_grad(self, runner):
module = self._get_module(runner)
for name, p in module.named_parameters():
for k, ratio in zip(self.multiply_key, self.multiply_rate):
if k in name:
p.grad = p.grad * ratio
def adapt_torchacc(self, runner):
import torchacc.torch_xla.core.xla_model as xm
gradients = xm._fetch_gradients(runner.optimizer)
xm.all_reduce(
xm.REDUCE_SUM, gradients, scale=1.0 / xm.xrt_world_size())
def after_train_iter(self, runner):
if not torch.isnan(runner.outputs['loss']):
runner.outputs['loss'] /= self.update_interval
runner.outputs['loss'].backward()
self.skip_ignore_key(runner)
self.multiply_grad(runner)
if self.every_n_iters(runner, self.update_interval):
if is_torchacc_enabled():
self.adapt_torchacc(runner)
if self.grad_clip is not None:
self.clip_grads(runner.model.parameters())
runner.optimizer.step()
runner.optimizer.zero_grad()
else:
rank, _ = get_dist_info()
# catch nan loss, not update, zero_grad to pass
if rank == 0:
runner.logger.info('catch nan loss in iter %d, epoch %d' %
(runner.iter, runner.epoch))
if self.every_n_iters(runner, self.update_interval):
if self.grad_clip is not None:
self.clip_grads(runner.model.parameters())
runner.optimizer.zero_grad()
class AMPFP16OptimizerHook(OptimizerHook):
def __init__(self,
update_interval=1,
grad_clip=None,
coalesce=True,
bucket_size_mb=-1,
ignore_key=[],
ignore_key_epoch=[],
loss_scale={}):
'''
ignore_key: [str,...], ignore_key[i], name of parameters, which's gradient will be set to zero before every optimizer step when epoch < ignore_key_epoch[i]
ignore_key_epoch: [int,...], epoch < ignore_key_epoch[i], ignore_key[i]'s gradient will be set to zero.
loss_scale (float | dict): grade scale config. If loss_scale is a float, static loss scaling will be used with the specified scale.
It can also be a dict containing arguments of GradScalar. For Pytorch >= 1.6, we use official torch.cuda.amp.GradScaler.
please refer to: https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler for the parameters.
'''
self.grad_clip = grad_clip
self.coalesce = coalesce
self.bucket_size_mb = bucket_size_mb
self.update_interval = update_interval
self.ignore_key = ignore_key
self.ignore_key_epoch = ignore_key_epoch
self._scale_update_param = None
if LooseVersion(torch.__version__) >= LooseVersion('1.6.0'):
if isinstance(loss_scale, float):
self._scale_update_param = loss_scale
self.scaler = amp.GradScaler(init_scale=loss_scale)
elif isinstance(loss_scale, dict):
self.scaler = amp.GradScaler(**loss_scale)
else:
raise TypeError(
'`loss_scale` type must be in [float, dict], but got {loss_scale}'
)
def before_run(self, runner):
logging.info('open fp16')
# set `fp16_enabled` flag. adapt to mmdet
# TODO: find a more pretty way to adapt mmdet
for m in runner.model.modules():
if hasattr(m, 'fp16_enabled'):
m.fp16_enabled = True
def after_train_iter(self, runner):
loss = runner.outputs['loss'] / self.update_interval
if LooseVersion(torch.__version__) >= LooseVersion('1.6.0'):
self.scaler.scale(loss).backward()
self.skip_ignore_key(runner)
if self.every_n_iters(runner, self.update_interval):
# gradients allreduce must before scaler.unscale_
if is_torchacc_enabled():
self.adapt_torchacc(runner)
self.scaler.unscale_(runner.optimizer)
if self.grad_clip is not None:
self.clip_grads(runner.model.parameters())
self.scaler.step(runner.optimizer)
self.scaler.update(self._scale_update_param)
runner.optimizer.zero_grad()
else:
with amp.scale_loss(loss, runner.optimizer) as scaled_loss:
scaled_loss.backward()
self.skip_ignore_key(runner)
if self.every_n_iters(runner, self.update_interval):
if self.grad_clip is not None:
self.clip_grads(runner.model.parameters())
runner.optimizer.step()
runner.optimizer.zero_grad()