mirror of https://github.com/alibaba/EasyCV.git
184 lines
7.1 KiB
Python
184 lines
7.1 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import logging
|
|
from distutils.version import LooseVersion
|
|
|
|
import torch
|
|
from mmcv.parallel import is_module_wrapper
|
|
from mmcv.runner import OptimizerHook as _OptimizerHook
|
|
|
|
from easycv.framework.errors import TypeError
|
|
from easycv.utils.dist_utils import get_dist_info
|
|
from easycv.utils.torchacc_util import is_torchacc_enabled
|
|
|
|
if LooseVersion(torch.__version__) >= LooseVersion('1.6.0'):
|
|
from torch.cuda import amp
|
|
else:
|
|
try:
|
|
from apex import amp
|
|
except ImportError:
|
|
logging.warning(
|
|
'apex not installed, please install apex from https://www.github.com/nvidia/apex if you want to use fp16.'
|
|
)
|
|
|
|
|
|
class OptimizerHook(_OptimizerHook):
|
|
|
|
def __init__(self,
|
|
update_interval=1,
|
|
grad_clip=None,
|
|
coalesce=True,
|
|
bucket_size_mb=-1,
|
|
ignore_key=[],
|
|
ignore_key_epoch=[],
|
|
multiply_key=[],
|
|
multiply_rate=[]):
|
|
'''
|
|
ignore_key: [str,...], ignore_key[i], name of parameters, which's gradient will be set to zero before every optimizer step when epoch < ignore_key_epoch[i]
|
|
ignore_key_epoch: [int,...], epoch < ignore_key_epoch[i], ignore_key[i]'s gradient will be set to zero.
|
|
multiply_key:[str,...] multiply_key[i], name of parameters, which will set different learning rate ratio by multipy_rate
|
|
multiply_rate:[float,...] multiply_rate[i], different ratio
|
|
'''
|
|
self.grad_clip = grad_clip
|
|
self.coalesce = coalesce
|
|
self.bucket_size_mb = bucket_size_mb
|
|
self.update_interval = update_interval
|
|
self.ignore_key = ignore_key
|
|
self.ignore_key_epoch = ignore_key_epoch
|
|
self.multiply_key = multiply_key
|
|
self.multiply_rate = multiply_rate
|
|
|
|
def _get_module(self, runner):
|
|
module = runner.model
|
|
if is_module_wrapper(module):
|
|
module = module.module
|
|
return module
|
|
|
|
def skip_ignore_key(self, runner):
|
|
module = self._get_module(runner)
|
|
for name, p in module.named_parameters():
|
|
for k, epoch in zip(self.ignore_key, self.ignore_key_epoch):
|
|
if k in name and runner.epoch < epoch:
|
|
p.grad = None
|
|
|
|
def multiply_grad(self, runner):
|
|
module = self._get_module(runner)
|
|
for name, p in module.named_parameters():
|
|
for k, ratio in zip(self.multiply_key, self.multiply_rate):
|
|
if k in name:
|
|
p.grad = p.grad * ratio
|
|
|
|
def adapt_torchacc(self, runner):
|
|
import torchacc.torch_xla.core.xla_model as xm
|
|
gradients = xm._fetch_gradients(runner.optimizer)
|
|
xm.all_reduce(
|
|
xm.REDUCE_SUM, gradients, scale=1.0 / xm.xrt_world_size())
|
|
|
|
def after_train_iter(self, runner):
|
|
if not torch.isnan(runner.outputs['loss']):
|
|
runner.outputs['loss'] /= self.update_interval
|
|
runner.outputs['loss'].backward()
|
|
|
|
self.skip_ignore_key(runner)
|
|
self.multiply_grad(runner)
|
|
|
|
if self.every_n_iters(runner, self.update_interval):
|
|
if is_torchacc_enabled():
|
|
self.adapt_torchacc(runner)
|
|
|
|
if self.grad_clip is not None:
|
|
self.clip_grads(runner.model.parameters())
|
|
|
|
runner.optimizer.step()
|
|
runner.optimizer.zero_grad()
|
|
else:
|
|
rank, _ = get_dist_info()
|
|
# catch nan loss, not update, zero_grad to pass
|
|
if rank == 0:
|
|
runner.logger.info('catch nan loss in iter %d, epoch %d' %
|
|
(runner.iter, runner.epoch))
|
|
|
|
if self.every_n_iters(runner, self.update_interval):
|
|
if self.grad_clip is not None:
|
|
self.clip_grads(runner.model.parameters())
|
|
runner.optimizer.zero_grad()
|
|
|
|
|
|
class AMPFP16OptimizerHook(OptimizerHook):
|
|
|
|
def __init__(self,
|
|
update_interval=1,
|
|
grad_clip=None,
|
|
coalesce=True,
|
|
bucket_size_mb=-1,
|
|
ignore_key=[],
|
|
ignore_key_epoch=[],
|
|
loss_scale={}):
|
|
'''
|
|
ignore_key: [str,...], ignore_key[i], name of parameters, which's gradient will be set to zero before every optimizer step when epoch < ignore_key_epoch[i]
|
|
ignore_key_epoch: [int,...], epoch < ignore_key_epoch[i], ignore_key[i]'s gradient will be set to zero.
|
|
loss_scale (float | dict): grade scale config. If loss_scale is a float, static loss scaling will be used with the specified scale.
|
|
It can also be a dict containing arguments of GradScalar. For Pytorch >= 1.6, we use official torch.cuda.amp.GradScaler.
|
|
please refer to: https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler for the parameters.
|
|
'''
|
|
self.grad_clip = grad_clip
|
|
self.coalesce = coalesce
|
|
self.bucket_size_mb = bucket_size_mb
|
|
self.update_interval = update_interval
|
|
self.ignore_key = ignore_key
|
|
self.ignore_key_epoch = ignore_key_epoch
|
|
self._scale_update_param = None
|
|
|
|
if LooseVersion(torch.__version__) >= LooseVersion('1.6.0'):
|
|
if isinstance(loss_scale, float):
|
|
self._scale_update_param = loss_scale
|
|
self.scaler = amp.GradScaler(init_scale=loss_scale)
|
|
elif isinstance(loss_scale, dict):
|
|
self.scaler = amp.GradScaler(**loss_scale)
|
|
else:
|
|
raise TypeError(
|
|
'`loss_scale` type must be in [float, dict], but got {loss_scale}'
|
|
)
|
|
|
|
def before_run(self, runner):
|
|
logging.info('open fp16')
|
|
|
|
# set `fp16_enabled` flag. adapt to mmdet
|
|
# TODO: find a more pretty way to adapt mmdet
|
|
for m in runner.model.modules():
|
|
if hasattr(m, 'fp16_enabled'):
|
|
m.fp16_enabled = True
|
|
|
|
def after_train_iter(self, runner):
|
|
loss = runner.outputs['loss'] / self.update_interval
|
|
|
|
if LooseVersion(torch.__version__) >= LooseVersion('1.6.0'):
|
|
self.scaler.scale(loss).backward()
|
|
|
|
self.skip_ignore_key(runner)
|
|
|
|
if self.every_n_iters(runner, self.update_interval):
|
|
|
|
# gradients allreduce must before scaler.unscale_
|
|
if is_torchacc_enabled():
|
|
self.adapt_torchacc(runner)
|
|
|
|
self.scaler.unscale_(runner.optimizer)
|
|
if self.grad_clip is not None:
|
|
self.clip_grads(runner.model.parameters())
|
|
|
|
self.scaler.step(runner.optimizer)
|
|
self.scaler.update(self._scale_update_param)
|
|
runner.optimizer.zero_grad()
|
|
else:
|
|
with amp.scale_loss(loss, runner.optimizer) as scaled_loss:
|
|
scaled_loss.backward()
|
|
|
|
self.skip_ignore_key(runner)
|
|
|
|
if self.every_n_iters(runner, self.update_interval):
|
|
if self.grad_clip is not None:
|
|
self.clip_grads(runner.model.parameters())
|
|
|
|
runner.optimizer.step()
|
|
runner.optimizer.zero_grad()
|