EasyCV/easycv/models/ocr/rec/ocr_rec.py

116 lines
3.9 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from easycv.models import builder
from easycv.models.base import BaseModel
from easycv.models.builder import MODELS
from easycv.models.ocr.postprocess.rec_postprocess import CTCLabelDecode
from easycv.utils.checkpoint import load_checkpoint
from easycv.utils.logger import get_root_logger
@MODELS.register_module()
class OCRRecNet(BaseModel):
"""for text recognition
"""
def __init__(
self,
backbone,
head,
postprocess,
neck=None,
loss=None,
pretrained=None,
**kwargs,
):
super(OCRRecNet, self).__init__()
self.pretrained = pretrained
# self.backbone = eval(backbone.type)(**backbone)
self.backbone = builder.build_backbone(backbone)
self.neck = builder.build_neck(neck) if neck else None
self.head = builder.build_head(head)
self.loss = builder.build_loss(loss) if loss else None
self.postprocess_op = eval(postprocess.type)(**postprocess)
self.init_weights()
def init_weights(self):
logger = get_root_logger()
if self.pretrained:
load_checkpoint(self, self.pretrained, strict=False, logger=logger)
else:
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(
m, nn.ConvTranspose2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.zeros_(m.bias)
def extract_feat(self, x, label=None, valid_ratios=None):
y = dict()
x = self.backbone(x)
y['backbone_out'] = x
if self.neck:
x = self.neck(x)
y['neck_out'] = x
x = self.head(x, label=label, valid_ratios=valid_ratios)
# for multi head, save ctc neck out for udml
if isinstance(x, dict) and 'ctc_nect' in x.keys():
y['neck_out'] = x['ctc_neck']
y['head_out'] = x
elif isinstance(x, dict):
y.update(x)
else:
y['head_out'] = x
return y
def forward_train(self, img, **kwargs):
label_ctc = kwargs.get('label_ctc', None)
label_sar = kwargs.get('label_sar', None)
length = kwargs.get('length', None)
valid_ratio = kwargs.get('valid_ratio', None)
predicts = self.extract_feat(
img, label=label_sar, valid_ratios=valid_ratio)
loss = self.loss(
predicts, label_ctc=label_ctc, label_sar=label_sar, length=length)
return loss
def forward_test(self, img, **kwargs):
label_ctc = kwargs.get('label_ctc', None)
result = {}
with torch.no_grad():
preds = self.extract_feat(img)
if label_ctc == None:
preds_text = self.postprocess(preds)
else:
preds_text, label_text = self.postprocess(preds, label_ctc)
result['label_text'] = label_text
result['preds_text'] = preds_text
return result
def postprocess(self, preds, label=None):
if isinstance(preds, dict):
preds = preds['head_out']
if isinstance(preds, list):
preds = [v.cpu().detach().numpy() for v in preds]
else:
preds = preds.cpu().detach().numpy()
label = label.cpu().detach().numpy() if label != None else label
text_out = self.postprocess_op(preds, label)
return text_out