mirror of https://github.com/alibaba/EasyCV.git
195 lines
6.3 KiB
Python
195 lines
6.3 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import warnings
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from mmcv.cnn import ConvModule
|
|
|
|
from easycv.models.builder import HEADS
|
|
from easycv.models.utils.ops import resize_tensor
|
|
from .base import BaseDecodeHead
|
|
|
|
|
|
# Modified from https://github.com/open-mmlab/mmsegmentation/blob/master/mmseg/models/decode_heads/uper_head.py
|
|
@HEADS.register_module()
|
|
class UPerHead(BaseDecodeHead):
|
|
"""Unified Perceptual Parsing for Scene Understanding.
|
|
|
|
This head is the implementation of `UPerNet
|
|
<https://arxiv.org/abs/1807.10221>`_.
|
|
|
|
Args:
|
|
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
|
|
Module applied on the last feature. Default: (1, 2, 3, 6).
|
|
"""
|
|
|
|
def __init__(self, pool_scales=(1, 2, 3, 6), **kwargs):
|
|
super(UPerHead, self).__init__(
|
|
input_transform='multiple_select', **kwargs)
|
|
# PSP Module
|
|
self.psp_modules = PPM(
|
|
pool_scales,
|
|
self.in_channels[-1],
|
|
self.channels,
|
|
conv_cfg=self.conv_cfg,
|
|
norm_cfg=self.norm_cfg,
|
|
act_cfg=self.act_cfg,
|
|
align_corners=self.align_corners)
|
|
self.bottleneck = ConvModule(
|
|
self.in_channels[-1] + len(pool_scales) * self.channels,
|
|
self.channels,
|
|
3,
|
|
padding=1,
|
|
conv_cfg=self.conv_cfg,
|
|
norm_cfg=self.norm_cfg,
|
|
act_cfg=self.act_cfg)
|
|
# FPN Module
|
|
self.lateral_convs = nn.ModuleList()
|
|
self.fpn_convs = nn.ModuleList()
|
|
for in_channels in self.in_channels[:-1]: # skip the top layer
|
|
l_conv = ConvModule(
|
|
in_channels,
|
|
self.channels,
|
|
1,
|
|
conv_cfg=self.conv_cfg,
|
|
norm_cfg=self.norm_cfg,
|
|
act_cfg=self.act_cfg,
|
|
inplace=False)
|
|
fpn_conv = ConvModule(
|
|
self.channels,
|
|
self.channels,
|
|
3,
|
|
padding=1,
|
|
conv_cfg=self.conv_cfg,
|
|
norm_cfg=self.norm_cfg,
|
|
act_cfg=self.act_cfg,
|
|
inplace=False)
|
|
self.lateral_convs.append(l_conv)
|
|
self.fpn_convs.append(fpn_conv)
|
|
|
|
self.fpn_bottleneck = ConvModule(
|
|
len(self.in_channels) * self.channels,
|
|
self.channels,
|
|
3,
|
|
padding=1,
|
|
conv_cfg=self.conv_cfg,
|
|
norm_cfg=self.norm_cfg,
|
|
act_cfg=self.act_cfg)
|
|
|
|
def psp_forward(self, inputs):
|
|
"""Forward function of PSP module."""
|
|
x = inputs[-1]
|
|
psp_outs = [x]
|
|
psp_outs.extend(self.psp_modules(x))
|
|
psp_outs = torch.cat(psp_outs, dim=1)
|
|
output = self.bottleneck(psp_outs)
|
|
|
|
return output
|
|
|
|
def _forward_feature(self, inputs):
|
|
"""Forward function for feature maps before classifying each pixel with
|
|
``self.cls_seg`` fc.
|
|
|
|
Args:
|
|
inputs (list[Tensor]): List of multi-level img features.
|
|
|
|
Returns:
|
|
feats (Tensor): A tensor of shape (batch_size, self.channels,
|
|
H, W) which is feature map for last layer of decoder head.
|
|
"""
|
|
inputs = self._transform_inputs(inputs)
|
|
|
|
# build laterals
|
|
laterals = [
|
|
lateral_conv(inputs[i])
|
|
for i, lateral_conv in enumerate(self.lateral_convs)
|
|
]
|
|
|
|
laterals.append(self.psp_forward(inputs))
|
|
|
|
# build top-down path
|
|
used_backbone_levels = len(laterals)
|
|
for i in range(used_backbone_levels - 1, 0, -1):
|
|
prev_shape = laterals[i - 1].shape[2:]
|
|
laterals[i - 1] = laterals[i - 1] + resize_tensor(
|
|
laterals[i],
|
|
size=prev_shape,
|
|
mode='bilinear',
|
|
align_corners=self.align_corners)
|
|
|
|
# build outputs
|
|
fpn_outs = [
|
|
self.fpn_convs[i](laterals[i])
|
|
for i in range(used_backbone_levels - 1)
|
|
]
|
|
# append psp feature
|
|
fpn_outs.append(laterals[-1])
|
|
|
|
for i in range(used_backbone_levels - 1, 0, -1):
|
|
fpn_outs[i] = resize_tensor(
|
|
fpn_outs[i],
|
|
size=fpn_outs[0].shape[2:],
|
|
mode='bilinear',
|
|
align_corners=self.align_corners)
|
|
fpn_outs = torch.cat(fpn_outs, dim=1)
|
|
feats = self.fpn_bottleneck(fpn_outs)
|
|
return feats
|
|
|
|
def forward(self, inputs):
|
|
"""Forward function."""
|
|
output = self._forward_feature(inputs)
|
|
output = self.cls_seg(output)
|
|
return output
|
|
|
|
|
|
class PPM(nn.ModuleList):
|
|
"""Pooling Pyramid Module used in PSPNet.
|
|
|
|
Args:
|
|
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
|
|
Module.
|
|
in_channels (int): Input channels.
|
|
channels (int): Channels after modules, before conv_seg.
|
|
conv_cfg (dict|None): Config of conv layers.
|
|
norm_cfg (dict|None): Config of norm layers.
|
|
act_cfg (dict): Config of activation layers.
|
|
align_corners (bool): align_corners argument of F.interpolate.
|
|
"""
|
|
|
|
def __init__(self, pool_scales, in_channels, channels, conv_cfg, norm_cfg,
|
|
act_cfg, align_corners, **kwargs):
|
|
super(PPM, self).__init__()
|
|
self.pool_scales = pool_scales
|
|
self.align_corners = align_corners
|
|
self.in_channels = in_channels
|
|
self.channels = channels
|
|
self.conv_cfg = conv_cfg
|
|
self.norm_cfg = norm_cfg
|
|
self.act_cfg = act_cfg
|
|
for pool_scale in pool_scales:
|
|
self.append(
|
|
nn.Sequential(
|
|
nn.AdaptiveAvgPool2d(pool_scale),
|
|
ConvModule(
|
|
self.in_channels,
|
|
self.channels,
|
|
1,
|
|
conv_cfg=self.conv_cfg,
|
|
norm_cfg=self.norm_cfg,
|
|
act_cfg=self.act_cfg,
|
|
**kwargs)))
|
|
|
|
def forward(self, x):
|
|
"""Forward function."""
|
|
ppm_outs = []
|
|
for ppm in self:
|
|
ppm_out = ppm(x)
|
|
upsampled_ppm_out = resize_tensor(
|
|
ppm_out,
|
|
size=x.size()[2:],
|
|
mode='bilinear',
|
|
align_corners=self.align_corners)
|
|
ppm_outs.append(upsampled_ppm_out)
|
|
return ppm_outs
|