EasyCV/easycv/utils/bbox_util.py

252 lines
9.0 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import math
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
from torch import Tensor
def bound_limits(v):
if v < 0.0:
v = 0.0
elif v > 1.0:
v = 1.0
return v
def bound_limits_for_list(xywh):
return tuple([bound_limits(v) for v in xywh])
def xyxy2xywh_with_shape(x, shape):
dh = 1.0 / shape[0]
dw = 1.0 / shape[1]
x_center = (x[0] + x[2]) / 2.0
y_center = (x[1] + x[3]) / 2.0
w = x[2] - x[0] # width
h = x[3] - x[1] # height
x_center *= dw
y_center *= dh
w *= dw
h *= dh
return bound_limits_for_list((x_center, y_center, w, h))
def batched_cxcywh2xyxy_with_shape(bboxes, shape):
"""reverse of `xyxy2xywh_with_shape`
transform normalized points `[[x_center, y_center, box_w, box_h],...]`
to standard [[x1, y1, x2, y2],...]
Args:
bboxes: np.array or tensor like [[x_center, y_center, box_w, box_h],...],
all value is normalized
shape: img shape: [h, w]
return: np.array or tensor like [[x1, y1, x2, y2],...]
"""
h, w = shape[0], shape[1]
bboxes[:, 0] = bboxes[:, 0] * w # x_center
bboxes[:, 1] = bboxes[:, 1] * h # y_center
bboxes[:, 2] = bboxes[:, 2] * w # box w
bboxes[:, 3] = bboxes[:, 3] * h # box h
target = torch.zeros_like(bboxes) if isinstance(bboxes, torch.Tensor) \
else np.zeros_like(bboxes)
target[:, 0] = bboxes[:, 0] - bboxes[:, 2] * 0.5 # axis x1
target[:, 1] = bboxes[:, 1] - bboxes[:, 3] * 0.5 # axis y1
target[:, 2] = bboxes[:, 0] + bboxes[:, 2] * 0.5 # axis x2
target[:, 3] = bboxes[:, 1] + bboxes[:, 3] * 0.5 # axis y2
# handling out-of-bounds
target[:, 0][target[:, 0] < 0] = 0
target[:, 0][target[:, 0] > w] = w
target[:, 1][target[:, 1] < 0] = 0
target[:, 1][target[:, 1] > h] = h
target[:, 2][target[:, 2] < 0] = 0
target[:, 2][target[:, 2] > w] = w
target[:, 3][target[:, 3] < 0] = 0
target[:, 3][target[:, 3] > h] = h
return target
def batched_xyxy2cxcywh_with_shape(bboxes, shape):
dh = 1.0 / shape[0]
dw = 1.0 / shape[1]
bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0]
bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1]
bboxes[:, 0] = bboxes[:, 0] + bboxes[:, 2] * 0.5
bboxes[:, 1] = bboxes[:, 1] + bboxes[:, 3] * 0.5
bboxes[:, 2] = bboxes[:, 2] * dw
bboxes[:, 3] = bboxes[:, 3] * dh
bboxes[:, 0] = bboxes[:, 0] * dw
bboxes[:, 1] = bboxes[:, 1] * dh
return bboxes
def xyxy2xywh_coco(bboxes, offset=0):
# Convert nx4 boxes from [x1, y1, x2, y2] to [x1, y1, w, h] where xy1=top-left, xy2=bottom-right
bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0] + offset
bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1] + offset
return bboxes
def xywh2xyxy_coco(bboxes, offset=0):
# Convert nx4 boxes from [x1, y1, w, h] to [x1, y1, y1, y2]
bboxes[:, 2] = bboxes[:, 2] + bboxes[:, 0] + offset
bboxes[:, 3] = bboxes[:, 3] + bboxes[:, 1] + offset
return bboxes
def xyxy2xywh(x):
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
y = torch.zeros_like(x) if isinstance(x,
torch.Tensor) else np.zeros_like(x)
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
y[:, 2] = x[:, 2] - x[:, 0] # width
y[:, 3] = x[:, 3] - x[:, 1] # height
return y
def xywh2xyxy(x):
# Convert nx4 boxes from [x_c, y_c, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = torch.zeros_like(x) if isinstance(x,
torch.Tensor) else np.zeros_like(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
return y
def bbox_iou(box1,
box2,
x1y1x2y2=True,
GIoU=False,
DIoU=False,
CIoU=False,
eps=1e-9):
# Returns the IoU of box1 to box2. box1 is 4xn, box2 is nx4
box2 = box2.T
# Get the coordinates of bounding boxes
if x1y1x2y2: # x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
else: # transform from xywh to xyxy
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
# Intersection area
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
# Union Area
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
union = w1 * h1 + w2 * h2 - inter + eps
iou = inter / union
if GIoU or DIoU or CIoU:
cw = torch.max(b1_x2, b2_x2) - torch.min(
b1_x1, b2_x1) # convex (smallest enclosing box) width
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
c2 = cw**2 + ch**2 + eps # convex diagonal squared
# center distance squared
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2)**2 +
(b2_y1 + b2_y2 - b1_y1 - b1_y2)**2) / 4
if DIoU:
return iou - rho2 / c2 # DIoU
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi**2) * torch.pow(
torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
with torch.no_grad():
alpha = v / ((1 + eps) - iou + v)
return iou - (rho2 / c2 + v * alpha) # CIoU
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
c_area = cw * ch + eps # convex area
return iou - (c_area - union) / c_area # GIoU
else:
return iou # IoU
def box_iou(box1, box2):
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
"""
Return intersection-over-union (Jaccard index) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Arguments:
box1 (Tensor[N, 4])
box2 (Tensor[M, 4])
Returns:
iou (Tensor[N, M]): the NxM matrix containing the pairwise
IoU values for every element in boxes1 and boxes2
"""
def box_area(box):
# box = 4xn
return (box[2] - box[0]) * (box[3] - box[1])
area1 = box_area(box1.T)
area2 = box_area(box2.T)
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) -
torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
return inter / (area1[:, None] + area2 - inter
) # iou = inter / (area1 + area2 - inter)
def box_candidates(box1,
box2,
wh_thr=2,
ar_thr=20,
area_thr=0.1): # box1(4,n), box2(4,n)
"""Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
"""
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 /
(w1 * h1 + 1e-16) > area_thr) & (
ar < ar_thr) # candidates
def clip_coords(boxes: Tensor, img_shape: Tuple[int, int]) -> None:
"""Clip bounding xyxy bounding boxes to image shape
Args:
boxes: tensor with shape Nx4 (x1,y1,x2,y2)
img_shape: image size tuple, (height, width)
"""
boxes[:, 0].clamp_(0, img_shape[1]) # x1
boxes[:, 1].clamp_(0, img_shape[0]) # y1
boxes[:, 2].clamp_(0, img_shape[1]) # x2
boxes[:, 3].clamp_(0, img_shape[0]) # y2
def scale_coords(img1_shape: Tuple[int, int],
coords: torch.Tensor,
img0_shape: Tuple[int, int],
ratio_pad: Optional[Tuple[Tuple[float, float],
Tuple[float, float]]] = None):
# Rescale coords (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0],
img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (
img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
coords[:, torch.tensor([0, 2])] -= pad[0] # x padding
coords[:, torch.tensor([1, 3])] -= pad[1] # y padding
coords[:, :4] = coords[:, :4] / gain
clip_coords(coords, img0_shape)
return coords