mirror of https://github.com/alibaba/EasyCV.git
192 lines
5.5 KiB
Python
192 lines
5.5 KiB
Python
_base_ = '../../base.py'
|
|
|
|
# model settings s m l x
|
|
model = dict(
|
|
type='YOLOX',
|
|
test_conf=0.01,
|
|
nms_thre=0.65,
|
|
backbone='CSPDarknet',
|
|
model_type='s', # s m l x tiny nano
|
|
head=dict(
|
|
type='YOLOXHead',
|
|
model_type='s',
|
|
obj_loss_type='BCE',
|
|
reg_loss_type='giou',
|
|
num_classes=80,
|
|
decode_in_inference=True))
|
|
|
|
# s m l x
|
|
img_scale = (640, 640)
|
|
random_size = (14, 26)
|
|
scale_ratio = (0.1, 2)
|
|
|
|
# tiny nano without mixup
|
|
# img_scale = (416, 416)
|
|
# random_size = (10, 20)
|
|
# scale_ratio = (0.5, 1.5)
|
|
|
|
CLASSES = [
|
|
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
|
|
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
|
|
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
|
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
|
|
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
|
|
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
|
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
|
|
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
|
|
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
|
|
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
|
|
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
|
|
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
|
'hair drier', 'toothbrush'
|
|
]
|
|
|
|
# dataset settings
|
|
data_root = 'data/coco/'
|
|
|
|
img_norm_cfg = dict(
|
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
|
|
train_pipeline = [
|
|
dict(type='MMMosaic', img_scale=img_scale, pad_val=114.0),
|
|
dict(
|
|
type='MMRandomAffine',
|
|
scaling_ratio_range=scale_ratio,
|
|
border=(-img_scale[0] // 2, -img_scale[1] // 2)),
|
|
dict(
|
|
type='MMMixUp', # s m x l; tiny nano will detele
|
|
img_scale=img_scale,
|
|
ratio_range=(0.8, 1.6),
|
|
pad_val=114.0),
|
|
dict(
|
|
type='MMPhotoMetricDistortion',
|
|
brightness_delta=32,
|
|
contrast_range=(0.5, 1.5),
|
|
saturation_range=(0.5, 1.5),
|
|
hue_delta=18),
|
|
dict(type='MMRandomFlip', flip_ratio=0.5),
|
|
dict(type='MMResize', keep_ratio=True),
|
|
dict(type='MMPad', pad_to_square=True, pad_val=(114.0, 114.0, 114.0)),
|
|
dict(type='MMNormalize', **img_norm_cfg),
|
|
dict(type='DefaultFormatBundle'),
|
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
|
|
]
|
|
test_pipeline = [
|
|
dict(type='MMResize', img_scale=img_scale, keep_ratio=True),
|
|
dict(type='MMPad', pad_to_square=True, pad_val=(114.0, 114.0, 114.0)),
|
|
dict(type='MMNormalize', **img_norm_cfg),
|
|
dict(type='DefaultFormatBundle'),
|
|
dict(type='Collect', keys=['img'])
|
|
]
|
|
|
|
train_dataset = dict(
|
|
type='DetImagesMixDataset',
|
|
data_source=dict(
|
|
type='DetSourceCoco',
|
|
ann_file=data_root + 'annotations/instances_train2017.json',
|
|
img_prefix=data_root + 'train2017/',
|
|
pipeline=[
|
|
dict(type='LoadImageFromFile', to_float32=True),
|
|
dict(type='LoadAnnotations', with_bbox=True)
|
|
],
|
|
classes=CLASSES,
|
|
filter_empty_gt=True,
|
|
iscrowd=False),
|
|
pipeline=train_pipeline,
|
|
dynamic_scale=img_scale)
|
|
|
|
val_dataset = dict(
|
|
type='DetImagesMixDataset',
|
|
imgs_per_gpu=2,
|
|
data_source=dict(
|
|
type='DetSourceCoco',
|
|
ann_file=data_root + 'annotations/instances_val2017.json',
|
|
img_prefix=data_root + 'val2017/',
|
|
pipeline=[
|
|
dict(type='LoadImageFromFile', to_float32=True),
|
|
dict(type='LoadAnnotations', with_bbox=True)
|
|
],
|
|
classes=CLASSES,
|
|
filter_empty_gt=False,
|
|
test_mode=True,
|
|
iscrowd=True),
|
|
pipeline=test_pipeline,
|
|
dynamic_scale=None,
|
|
label_padding=False)
|
|
|
|
data = dict(
|
|
imgs_per_gpu=16, workers_per_gpu=4, train=train_dataset, val=val_dataset)
|
|
|
|
# additional hooks
|
|
interval = 10
|
|
custom_hooks = [
|
|
dict(
|
|
type='YOLOXModeSwitchHook',
|
|
no_aug_epochs=15,
|
|
skip_type_keys=('MMMosaic', 'MMRandomAffine', 'MMMixUp'),
|
|
priority=48),
|
|
dict(
|
|
type='SyncRandomSizeHook',
|
|
ratio_range=random_size,
|
|
img_scale=img_scale,
|
|
interval=interval,
|
|
priority=48),
|
|
dict(
|
|
type='SyncNormHook',
|
|
num_last_epochs=15,
|
|
interval=interval,
|
|
priority=48)
|
|
]
|
|
|
|
# evaluation
|
|
eval_config = dict(
|
|
interval=10,
|
|
gpu_collect=False,
|
|
visualization_config=dict(
|
|
vis_num=10,
|
|
score_thr=0.5,
|
|
) # show by TensorboardLoggerHookV2 and WandbLoggerHookV2
|
|
)
|
|
eval_pipelines = [
|
|
dict(
|
|
mode='test',
|
|
data=data['val'],
|
|
evaluators=[dict(type='CocoDetectionEvaluator', classes=CLASSES)],
|
|
)
|
|
]
|
|
|
|
checkpoint_config = dict(interval=interval)
|
|
|
|
# optimizer
|
|
optimizer = dict(
|
|
type='SGD', lr=0.02, momentum=0.9, weight_decay=5e-4, nesterov=True)
|
|
optimizer_config = {}
|
|
|
|
# learning policy
|
|
lr_config = dict(
|
|
policy='YOLOX',
|
|
warmup='exp',
|
|
by_epoch=False,
|
|
warmup_by_epoch=True,
|
|
warmup_ratio=1,
|
|
warmup_iters=5, # 5 epoch
|
|
num_last_epochs=15,
|
|
min_lr_ratio=0.05)
|
|
|
|
# exponetial model average
|
|
ema = dict(decay=0.9998)
|
|
|
|
# runtime settings
|
|
total_epochs = 300
|
|
|
|
# yapf:disable
|
|
log_config = dict(
|
|
interval=100,
|
|
hooks=[
|
|
dict(type='TextLoggerHook'),
|
|
dict(type='TensorboardLoggerHookV2'),
|
|
# dict(type='WandbLoggerHookV2'),
|
|
])
|
|
|
|
export = dict(export_type = 'raw', preprocess_jit = False, batch_size=1, blade_config=dict(enable_fp16=True, fp16_fallback_op_ratio=0.01), use_trt_efficientnms=False)
|