EasyCV/easycv/models/selfsup/moby.py

295 lines
10 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import torch
import torch.nn as nn
import torch.nn.functional as F
from easycv.utils.checkpoint import load_checkpoint
from easycv.utils.logger import get_root_logger, print_log
from easycv.utils.preprocess_function import gaussianBlur, randomGrayScale
from .. import builder
from ..base import BaseModel
from ..registry import MODELS
@MODELS.register_module
class MoBY(BaseModel):
'''MoBY.
Part of the code is borrowed from:
https://github.com/SwinTransformer/Transformer-SSL/blob/main/models/moby.py.
'''
def __init__(self,
backbone,
train_preprocess=[],
neck=None,
head=None,
pretrained=None,
queue_len=4096,
contrast_temperature=0.2,
momentum=0.99,
online_drop_path_rate=0.2,
target_drop_path_rate=0.0,
**kwargs):
""" Init Moby
Args:
backbone: backbone config to build vision backbone
train_preprocess: [gaussBlur, mixUp, solarize]
neck: neck config to build Moby Neck
head: head config to build Moby Neck
pretrained: pretrained weight for backbone
queue_len : moby queue length
contrast_temperature : contrastive_loss temperature
momentum : ema target weights momentum
online_drop_path_rate: for transformer based backbone, set online model drop_path_rate
target_drop_path_rate: for transformer based backbone, set target model drop_path_rate
"""
super(MoBY, self).__init__()
self.pretrained = pretrained
self.preprocess_key_map = {
'randomGrayScale': randomGrayScale,
'gaussianBlur': gaussianBlur
}
self.train_preprocess = [
self.preprocess_key_map[i] for i in train_preprocess
]
# build model
if backbone.get('drop_path_rate', None) is not None:
backbone['drop_path_rate'] = online_drop_path_rate
self.encoder_q = builder.build_backbone(backbone)
if backbone.get('drop_path_rate', None) is not None:
backbone['drop_path_rate'] = target_drop_path_rate
self.encoder_k = builder.build_backbone(backbone)
self.backbone = self.encoder_q
self.projector_q = builder.build_neck(neck)
self.projector_k = builder.build_neck(neck)
self.predictor = builder.build_neck(head)
# copy param, set stop_grad
for param_q, param_k in zip(self.encoder_q.parameters(),
self.encoder_k.parameters()):
param_k.data.copy_(param_q.data) # initialize
param_k.requires_grad = False # not update by gradient
for param_q, param_k in zip(self.projector_q.parameters(),
self.projector_k.parameters()):
param_k.data.copy_(param_q.data)
param_k.requires_grad = False
# convert bn to sync bn
try:
nn.SyncBatchNorm.convert_sync_batchnorm(self.encoder_q)
nn.SyncBatchNorm.convert_sync_batchnorm(self.encoder_k)
except Exception as e:
print('Convert encode BN to syncBN failed for MoBY backbone %s' %
(str(type(self.encoder_q))))
nn.SyncBatchNorm.convert_sync_batchnorm(self.projector_q)
nn.SyncBatchNorm.convert_sync_batchnorm(self.projector_k)
nn.SyncBatchNorm.convert_sync_batchnorm(self.predictor)
# set parameters
self.init_weights()
self.queue_len = queue_len
self.momentum = momentum
self.contrast_temperature = contrast_temperature
self.feat_dim = head.get('out_channels', 256)
assert neck.get('out_channels', 256) == head.get(
'out_channels',
256), 'MoBY head and neck should set same output dim'
# create the queue
self.register_buffer('queue1',
torch.randn(self.feat_dim, self.queue_len))
self.register_buffer('queue2',
torch.randn(self.feat_dim, self.queue_len))
self.queue1 = F.normalize(self.queue1, dim=0)
self.queue2 = F.normalize(self.queue2, dim=0)
self.register_buffer('queue_ptr', torch.zeros(1, dtype=torch.long))
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
def init_weights(self):
if isinstance(self.pretrained, str):
logger = get_root_logger()
load_checkpoint(
self.encoder_q, self.pretrained, strict=False, logger=logger)
else:
self.encoder_q.init_weights()
for param_q, param_k in zip(self.encoder_q.parameters(),
self.encoder_k.parameters()):
param_k.data.copy_(param_q.data)
def forward_backbone(self, img):
feature_list = self.backbone(img)
return feature_list
@torch.no_grad()
def _momentum_update_key_encoder(self):
"""
Momentum update of the key encoder
"""
# need a scheduler
_contrast_momentum = self.momentum
for param_q, param_k in zip(self.encoder_q.parameters(),
self.encoder_k.parameters()):
param_k.data = param_k.data * _contrast_momentum + param_q.data * (
1. - _contrast_momentum)
for param_q, param_k in zip(self.projector_q.parameters(),
self.projector_k.parameters()):
param_k.data = param_k.data * _contrast_momentum + param_q.data * (
1. - _contrast_momentum)
@torch.no_grad()
def _dequeue_and_enqueue(self, keys1, keys2):
# gather keys before updating queue
keys1 = concat_all_gather(keys1)
keys2 = concat_all_gather(keys2)
batch_size = keys1.shape[0]
ptr = int(self.queue_ptr)
assert self.queue_len % batch_size == 0 # for simplicity
# replace the keys at ptr (dequeue and enqueue)
self.queue1[:, ptr:ptr + batch_size] = keys1.transpose(0, 1)
self.queue2[:, ptr:ptr + batch_size] = keys2.transpose(0, 1)
ptr = (ptr + batch_size) % self.queue_len # move pointer
self.queue_ptr[0] = ptr
def contrastive_loss(self, q, k, queue):
# positive logits: Nx1
l_pos = torch.einsum('nc,nc->n', [q, k]).unsqueeze(-1)
# negative logits: NxK
l_neg = torch.einsum('nc,ck->nk', [q, queue.clone().detach()])
# logits: Nx(1+K)
logits = torch.cat([l_pos, l_neg], dim=1)
# apply temperature
logits /= self.contrast_temperature
# labels: positive key indicators
labels = torch.zeros(logits.shape[0], dtype=torch.long).cuda()
return F.cross_entropy(logits, labels)
def forward_train(self, img, **kwargs):
assert isinstance(img, list)
assert len(img) == 2
for _img in img:
assert _img.dim() == 4, \
'Input must have 4 dims, got: {}'.format(_img.dim())
im_q = img[0].contiguous()
im_k = img[1].contiguous()
for preprocess in self.train_preprocess:
im_q = preprocess(im_q)
im_k = preprocess(im_k)
# compute query features
feat_1 = self.encoder_q(im_q) # queries: NxC
proj_1 = self.projector_q(feat_1)
pred_1 = self.predictor(proj_1)[0]
pred_1 = F.normalize(pred_1, dim=1)
feat_2 = self.encoder_q(im_k)
proj_2 = self.projector_q(feat_2)
pred_2 = self.predictor(proj_2)[0]
pred_2 = F.normalize(pred_2, dim=1)
# compute key features
with torch.no_grad(): # no gradient to keys
self._momentum_update_key_encoder() # update the key encoder
feat_1_ng = self.encoder_k(im_q) # keys: NxC
proj_1_ng = self.projector_k(feat_1_ng)[0]
proj_1_ng = F.normalize(proj_1_ng, dim=1)
feat_2_ng = self.encoder_k(im_k)
proj_2_ng = self.projector_k(feat_2_ng)[0]
proj_2_ng = F.normalize(proj_2_ng, dim=1)
# compute loss
losses = dict()
losses['loss'] = self.contrastive_loss(pred_1, proj_2_ng, self.queue2) \
+ self.contrastive_loss(pred_2, proj_1_ng, self.queue1)
self._dequeue_and_enqueue(proj_1_ng, proj_2_ng)
return losses
def forward_test(self, img, **kwargs):
pass
def forward_feature(self, img, **kwargs):
"""Forward backbone
Returns:
x (torch.Tensor): feature tensor
"""
return_dict = {}
x = self.backbone(img)
return_dict['backbone'] = x
if hasattr(self, 'neck') and self.neck is not None:
feature = self.neck([self.avg_pool(i) for i in x])[0]
else:
feature = self.avg_pool(x[-1])
return_dict['neck'] = feature
return return_dict
def forward(self,
img,
gt_label=None,
mode='train',
extract_list=['neck'],
**kwargs):
if mode == 'train':
return self.forward_train(img, **kwargs)
elif mode == 'test':
return self.forward_test(img, **kwargs)
elif mode == 'extract':
rd = self.forward_feature(img)
rv = {}
for name in extract_list:
if name in rd.keys():
rv[name] = rd[name]
else:
raise 'Extract %s is not support in classification models' % name
if gt_label is not None:
rv['gt_labels'] = gt_label.cpu()
return rv
else:
raise Exception('No such mode: {}'.format(mode))
# utils
@torch.no_grad()
def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
tensors_gather = [
torch.ones_like(tensor)
for _ in range(torch.distributed.get_world_size())
]
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
output = torch.cat(tensors_gather, dim=0)
return output