mirror of https://github.com/alibaba/EasyCV.git
174 lines
5.9 KiB
Python
174 lines
5.9 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import warnings
|
|
|
|
import torch.nn as nn
|
|
from mmcv.cnn import constant_init, kaiming_init
|
|
|
|
from .activation import build_activation_layer
|
|
from .conv_ws import ConvWS2d
|
|
from .norm import build_norm_layer
|
|
|
|
conv_cfg = {
|
|
'Conv': nn.Conv2d,
|
|
'ConvWS': ConvWS2d,
|
|
}
|
|
|
|
|
|
def build_conv_layer(cfg, *args, **kwargs):
|
|
""" Build convolution layer
|
|
|
|
Args:
|
|
cfg (None or dict): cfg should contain:
|
|
type (str): identify conv layer type.
|
|
layer args: args needed to instantiate a conv layer.
|
|
|
|
Returns:
|
|
layer (nn.Module): created conv layer
|
|
"""
|
|
if cfg is None:
|
|
cfg_ = dict(type='Conv')
|
|
else:
|
|
assert isinstance(cfg, dict) and 'type' in cfg
|
|
cfg_ = cfg.copy()
|
|
|
|
layer_type = cfg_.pop('type')
|
|
if layer_type not in conv_cfg:
|
|
raise KeyError('Unrecognized norm type {}'.format(layer_type))
|
|
else:
|
|
conv_layer = conv_cfg[layer_type]
|
|
|
|
layer = conv_layer(*args, **kwargs, **cfg_)
|
|
|
|
return layer
|
|
|
|
|
|
class ConvModule(nn.Module):
|
|
"""A conv block that contains conv/norm/activation layers.
|
|
|
|
Args:
|
|
in_channels (int): Same as nn.Conv2d.
|
|
out_channels (int): Same as nn.Conv2d.
|
|
kernel_size (int or tuple[int]): Same as nn.Conv2d.
|
|
stride (int or tuple[int]): Same as nn.Conv2d.
|
|
padding (int or tuple[int]): Same as nn.Conv2d.
|
|
dilation (int or tuple[int]): Same as nn.Conv2d.
|
|
groups (int): Same as nn.Conv2d.
|
|
bias (bool or str): If specified as `auto`, it will be decided by the
|
|
norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
|
|
False.
|
|
conv_cfg (dict): Config dict for convolution layer.
|
|
norm_cfg (dict): Config dict for normalization layer.
|
|
act_cfg (dict): Config of activation layers. Default: dict(type='ReLU')
|
|
inplace (bool): Whether to use inplace mode for activation.
|
|
order (tuple[str]): The order of conv/norm/activation layers. It is a
|
|
sequence of "conv", "norm" and "act". Examples are
|
|
("conv", "norm", "act") and ("act", "conv", "norm").
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride=1,
|
|
padding=0,
|
|
dilation=1,
|
|
groups=1,
|
|
bias='auto',
|
|
conv_cfg=None,
|
|
norm_cfg=None,
|
|
act_cfg=dict(type='ReLU'),
|
|
inplace=True,
|
|
order=('conv', 'norm', 'act')):
|
|
super(ConvModule, self).__init__()
|
|
assert conv_cfg is None or isinstance(conv_cfg, dict)
|
|
assert norm_cfg is None or isinstance(norm_cfg, dict)
|
|
self.conv_cfg = conv_cfg
|
|
self.norm_cfg = norm_cfg
|
|
self.act_cfg = act_cfg
|
|
self.inplace = inplace
|
|
self.order = order
|
|
assert isinstance(self.order, tuple) and len(self.order) == 3
|
|
assert set(order) == set(['conv', 'norm', 'act'])
|
|
|
|
self.with_norm = norm_cfg is not None
|
|
self.with_activation = act_cfg is not None
|
|
# if the conv layer is before a norm layer, bias is unnecessary.
|
|
if bias == 'auto':
|
|
bias = False if self.with_norm else True
|
|
self.with_bias = bias
|
|
|
|
if self.with_norm and self.with_bias:
|
|
warnings.warn('ConvModule has norm and bias at the same time')
|
|
|
|
# build convolution layer
|
|
self.conv = build_conv_layer(
|
|
conv_cfg,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
bias=bias)
|
|
# export the attributes of self.conv to a higher level for convenience
|
|
self.in_channels = self.conv.in_channels
|
|
self.out_channels = self.conv.out_channels
|
|
self.kernel_size = self.conv.kernel_size
|
|
self.stride = self.conv.stride
|
|
self.padding = self.conv.padding
|
|
self.dilation = self.conv.dilation
|
|
self.transposed = self.conv.transposed
|
|
self.output_padding = self.conv.output_padding
|
|
self.groups = self.conv.groups
|
|
|
|
# build normalization layers
|
|
if self.with_norm:
|
|
# norm layer is after conv layer
|
|
if order.index('norm') > order.index('conv'):
|
|
norm_channels = out_channels
|
|
else:
|
|
norm_channels = in_channels
|
|
self.norm_name, norm = build_norm_layer(norm_cfg, norm_channels)
|
|
self.add_module(self.norm_name, norm)
|
|
|
|
# build activation layer
|
|
if self.with_activation:
|
|
act_cfg_ = act_cfg.copy()
|
|
# nn.Tanh has no 'inplace' argument
|
|
if act_cfg_['type'] not in [
|
|
'Tanh', 'PReLU', 'Sigmoid', 'HSigmoid', 'Swish'
|
|
]:
|
|
act_cfg_.setdefault('inplace', inplace)
|
|
self.activate = build_activation_layer(act_cfg_)
|
|
|
|
# Use msra init by default
|
|
self.init_weights()
|
|
|
|
@property
|
|
def norm(self):
|
|
return getattr(self, self.norm_name)
|
|
|
|
def init_weights(self):
|
|
if not hasattr(self.conv, 'init_weights'):
|
|
if self.with_activation and self.act_cfg['type'] == 'LeakyReLU':
|
|
nonlinearity = 'leaky_relu'
|
|
a = self.act_cfg.get('negative_slope', 0.01)
|
|
else:
|
|
nonlinearity = 'relu'
|
|
a = 0
|
|
kaiming_init(
|
|
self.conv, a=a, mode='fan_in', nonlinearity=nonlinearity)
|
|
if self.with_norm:
|
|
constant_init(self.norm, 1, bias=0)
|
|
|
|
def forward(self, x, activate=True, norm=True):
|
|
for layer in self.order:
|
|
if layer == 'conv':
|
|
x = self.conv(x)
|
|
elif layer == 'norm' and norm and self.with_norm:
|
|
x = self.norm(x)
|
|
elif layer == 'act' and activate and self.with_activation:
|
|
x = self.activate(x)
|
|
return x
|