mirror of
https://github.com/alibaba/EasyCV.git
synced 2025-06-03 14:49:00 +08:00
1.Add a backbone: deitiii. 2.Add an optimizer: lamb. 3.Add a sampler: RASampler. 4.Add a lr update hook: CosineAnnealingWarmupByEpochLrUpdaterHook. 5.In easycv/models/classification/classification.py, I remove the default mixup_cfg to keep the classification.py clean.
144 lines
3.7 KiB
Python
144 lines
3.7 KiB
Python
# from PIL import Image
|
|
|
|
_base_ = 'configs/base.py'
|
|
|
|
log_config = dict(
|
|
interval=10,
|
|
hooks=[dict(type='TextLoggerHook'),
|
|
dict(type='TensorboardLoggerHook')])
|
|
|
|
# model settings
|
|
model = dict(
|
|
type='Classification',
|
|
train_preprocess=['mixUp'],
|
|
pretrained=False,
|
|
mixup_cfg=dict(
|
|
mixup_alpha=0.8,
|
|
cutmix_alpha=1.0,
|
|
cutmix_minmax=None,
|
|
prob=1.0,
|
|
switch_prob=0.5,
|
|
mode='batch',
|
|
label_smoothing=0.0,
|
|
num_classes=1000),
|
|
backbone=dict(
|
|
type='VisionTransformer',
|
|
img_size=[192],
|
|
num_classes=1000,
|
|
patch_size=16,
|
|
embed_dim=768,
|
|
depth=12,
|
|
num_heads=12,
|
|
mlp_ratio=4,
|
|
qkv_bias=True,
|
|
drop_rate=0.,
|
|
drop_path_rate=0.2,
|
|
use_layer_scale=True),
|
|
head=dict(
|
|
type='ClsHead',
|
|
loss_config=dict(
|
|
type='CrossEntropyLoss',
|
|
use_sigmoid=True,
|
|
loss_weight=1.0,
|
|
label_ceil=True),
|
|
with_fc=False,
|
|
use_num_classes=False))
|
|
|
|
data_train_list = 'data/imagenet1k/train.txt'
|
|
data_train_root = 'data/imagenet1k/train/'
|
|
data_test_list = 'data/imagenet1k/val.txt'
|
|
data_test_root = 'data/imagenet1k/val/'
|
|
|
|
dataset_type = 'ClsDataset'
|
|
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
three_augment_policies = [[
|
|
dict(type='PILGaussianBlur', prob=1.0, radius_min=0.1, radius_max=2.0),
|
|
], [
|
|
dict(type='Solarization', threshold=128),
|
|
], [
|
|
dict(type='Grayscale', num_output_channels=3),
|
|
]]
|
|
train_pipeline = [
|
|
dict(
|
|
type='RandomResizedCrop', size=192, scale=(0.08, 1.0),
|
|
interpolation=3), # interpolation='bicubic'
|
|
dict(type='RandomHorizontalFlip'),
|
|
dict(type='MMAutoAugment', policies=three_augment_policies),
|
|
dict(type='ColorJitter', brightness=0.3, contrast=0.3, saturation=0.3),
|
|
dict(type='ToTensor'),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
dict(type='Collect', keys=['img', 'gt_labels'])
|
|
]
|
|
size = int((256 / 224) * 192)
|
|
test_pipeline = [
|
|
dict(type='Resize', size=size, interpolation=3),
|
|
dict(type='CenterCrop', size=192),
|
|
dict(type='ToTensor'),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
dict(type='Collect', keys=['img', 'gt_labels'])
|
|
]
|
|
|
|
data = dict(
|
|
imgs_per_gpu=256,
|
|
workers_per_gpu=8,
|
|
use_repeated_augment_sampler=True,
|
|
train=dict(
|
|
type=dataset_type,
|
|
data_source=dict(
|
|
list_file=data_train_list,
|
|
root=data_train_root,
|
|
type='ClsSourceImageList'),
|
|
pipeline=train_pipeline),
|
|
val=dict(
|
|
type=dataset_type,
|
|
data_source=dict(
|
|
list_file=data_test_list,
|
|
root=data_test_root,
|
|
type='ClsSourceImageList'),
|
|
pipeline=test_pipeline))
|
|
|
|
eval_config = dict(initial=True, interval=1, gpu_collect=True)
|
|
eval_pipelines = [
|
|
dict(
|
|
mode='test',
|
|
data=data['val'],
|
|
dist_eval=True,
|
|
evaluators=[dict(type='ClsEvaluator', topk=(1, 5))],
|
|
)
|
|
]
|
|
|
|
# additional hooks
|
|
custom_hooks = []
|
|
|
|
# optimizer
|
|
optimizer = dict(
|
|
type='Lamb',
|
|
lr=0.003,
|
|
weight_decay=0.05,
|
|
eps=1e-8,
|
|
paramwise_options={
|
|
'cls_token': dict(weight_decay=0.),
|
|
'pos_embed': dict(weight_decay=0.),
|
|
'bias': dict(weight_decay=0.),
|
|
'norm': dict(weight_decay=0.),
|
|
'gamma_1': dict(weight_decay=0.),
|
|
'gamma_2': dict(weight_decay=0.),
|
|
})
|
|
optimizer_config = dict(grad_clip=None, update_interval=1)
|
|
|
|
lr_config = dict(
|
|
policy='CosineAnnealingWarmupByEpoch',
|
|
by_epoch=True,
|
|
min_lr_ratio=0.00001 / 0.003,
|
|
warmup='linear',
|
|
warmup_by_epoch=True,
|
|
warmup_iters=5,
|
|
warmup_ratio=0.000001 / 0.003,
|
|
)
|
|
checkpoint_config = dict(interval=10)
|
|
|
|
# runtime settings
|
|
total_epochs = 800
|
|
|
|
ema = dict(decay=0.99996)
|