Cathy0908 5ac6381758
add error code (#146)
* add error code
2022-09-19 16:07:04 +08:00

169 lines
6.9 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import math
import torch
from mmcv.runner import OPTIMIZERS
from torch.optim import Optimizer
from easycv.framework.errors import RuntimeError
@OPTIMIZERS.register_module()
class Lamb(Optimizer):
"""A pure pytorch variant of FuseLAMB (NvLamb variant) optimizer.
This class is copied from `timm`_. The LAMB was proposed in `Large Batch
Optimization for Deep Learning - Training BERT in 76 minutes`_.
.. _timm:
https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/lamb.py
.. _Large Batch Optimization for Deep Learning - Training BERT in 76 minutes:
https://arxiv.org/abs/1904.00962
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its norm. (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability. (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
grad_averaging (bool, optional): whether apply (1-beta2) to grad when
calculating running averages of gradient. (default: True)
max_grad_norm (float, optional): value used to clip global grad norm
(default: 1.0)
trust_clip (bool): enable LAMBC trust ratio clipping (default: False)
always_adapt (boolean, optional): Apply adaptive learning rate to 0.0
weight decay parameter (default: False)
""" # noqa: E501
def __init__(self,
params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-6,
weight_decay=0.01,
grad_averaging=True,
max_grad_norm=1.0,
trust_clip=False,
always_adapt=False):
defaults = dict(
lr=lr,
bias_correction=bias_correction,
betas=betas,
eps=eps,
weight_decay=weight_decay,
grad_averaging=grad_averaging,
max_grad_norm=max_grad_norm,
trust_clip=trust_clip,
always_adapt=always_adapt)
super().__init__(params, defaults)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
device = self.param_groups[0]['params'][0].device
one_tensor = torch.tensor(
1.0, device=device
) # because torch.where doesn't handle scalars correctly
global_grad_norm = torch.zeros(1, device=device)
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad
if grad.is_sparse:
raise RuntimeError(
'Lamb does not support sparse gradients, consider '
'SparseAdam instead.')
global_grad_norm.add_(grad.pow(2).sum())
global_grad_norm = torch.sqrt(global_grad_norm)
# FIXME it'd be nice to remove explicit tensor conversion of scalars
# when torch.where promotes
# scalar types properly https://github.com/pytorch/pytorch/issues/9190
max_grad_norm = torch.tensor(
self.defaults['max_grad_norm'], device=device)
clip_global_grad_norm = torch.where(global_grad_norm > max_grad_norm,
global_grad_norm / max_grad_norm,
one_tensor)
for group in self.param_groups:
bias_correction = 1 if group['bias_correction'] else 0
beta1, beta2 = group['betas']
grad_averaging = 1 if group['grad_averaging'] else 0
beta3 = 1 - beta1 if grad_averaging else 1.0
# assume same step across group now to simplify things
# per parameter step can be easily support by making it tensor, or
# pass list into kernel
if 'step' in group:
group['step'] += 1
else:
group['step'] = 1
if bias_correction:
bias_correction1 = 1 - beta1**group['step']
bias_correction2 = 1 - beta2**group['step']
else:
bias_correction1, bias_correction2 = 1.0, 1.0
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.div_(clip_global_grad_norm)
state = self.state[p]
# State initialization
if len(state) == 0:
# Exponential moving average of gradient valuesa
state['exp_avg'] = torch.zeros_like(p)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(grad, alpha=beta3) # m_t
exp_avg_sq.mul_(beta2).addcmul_(
grad, grad, value=1 - beta2) # v_t
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(
group['eps'])
update = (exp_avg / bias_correction1).div_(denom)
weight_decay = group['weight_decay']
if weight_decay != 0:
update.add_(p, alpha=weight_decay)
if weight_decay != 0 or group['always_adapt']:
# Layer-wise LR adaptation. By default, skip adaptation on
# parameters that are
# excluded from weight decay, unless always_adapt == True,
# then always enabled.
w_norm = p.norm(2.0)
g_norm = update.norm(2.0)
# FIXME nested where required since logical and/or not
# working in PT XLA
trust_ratio = torch.where(
w_norm > 0,
torch.where(g_norm > 0, w_norm / g_norm, one_tensor),
one_tensor,
)
if group['trust_clip']:
# LAMBC trust clipping, upper bound fixed at one
trust_ratio = torch.minimum(trust_ratio, one_tensor)
update.mul_(trust_ratio)
p.add_(update, alpha=-group['lr'])
return loss