Cathy0908 54e9571423
add BEVFormer (#203)
* add BEVFormer and benchmark
2022-10-24 17:20:12 +08:00

143 lines
4.8 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) Alibaba, Inc. and its affiliates.
from os import path as osp
import mmcv
import numpy as np
def _write_obj(points, out_filename):
"""Write points into ``obj`` format for meshlab visualization.
Args:
points (np.ndarray): Points in shape (N, dim).
out_filename (str): Filename to be saved.
"""
N = points.shape[0]
fout = open(out_filename, 'w')
for i in range(N):
if points.shape[1] == 6:
c = points[i, 3:].astype(int)
fout.write(
'v %f %f %f %d %d %d\n' %
(points[i, 0], points[i, 1], points[i, 2], c[0], c[1], c[2]))
else:
fout.write('v %f %f %f\n' %
(points[i, 0], points[i, 1], points[i, 2]))
fout.close()
def _write_oriented_bbox(scene_bbox, out_filename):
"""Export oriented (around Z axis) scene bbox to meshes.
Args:
scene_bbox(list[ndarray] or ndarray): xyz pos of center and
3 lengths (x_size, y_size, z_size) and heading angle around Z axis.
Y forward, X right, Z upward. heading angle of positive X is 0,
heading angle of positive Y is 90 degrees.
out_filename(str): Filename.
"""
import trimesh
def heading2rotmat(heading_angle):
rotmat = np.zeros((3, 3))
rotmat[2, 2] = 1
cosval = np.cos(heading_angle)
sinval = np.sin(heading_angle)
rotmat[0:2, 0:2] = np.array([[cosval, -sinval], [sinval, cosval]])
return rotmat
def convert_oriented_box_to_trimesh_fmt(box):
ctr = box[:3]
lengths = box[3:6]
trns = np.eye(4)
trns[0:3, 3] = ctr
trns[3, 3] = 1.0
trns[0:3, 0:3] = heading2rotmat(box[6])
box_trimesh_fmt = trimesh.creation.box(lengths, trns)
return box_trimesh_fmt
if len(scene_bbox) == 0:
scene_bbox = np.zeros((1, 7))
scene = trimesh.scene.Scene()
for box in scene_bbox:
scene.add_geometry(convert_oriented_box_to_trimesh_fmt(box))
mesh_list = trimesh.util.concatenate(scene.dump())
# save to obj file
trimesh.io.export.export_mesh(mesh_list, out_filename, file_type='obj')
return
def show_result(points,
gt_bboxes,
pred_bboxes,
out_dir,
filename,
show=False,
snapshot=False,
pred_labels=None):
"""Convert results into format that is directly readable for meshlab.
Args:
points (np.ndarray): Points.
gt_bboxes (np.ndarray): Ground truth boxes.
pred_bboxes (np.ndarray): Predicted boxes.
out_dir (str): Path of output directory
filename (str): Filename of the current frame.
show (bool, optional): Visualize the results online. Defaults to False.
snapshot (bool, optional): Whether to save the online results.
Defaults to False.
pred_labels (np.ndarray, optional): Predicted labels of boxes.
Defaults to None.
"""
result_path = osp.join(out_dir, filename)
mmcv.mkdir_or_exist(result_path)
if show:
from .open3d_vis import Visualizer
vis = Visualizer(points)
if pred_bboxes is not None:
if pred_labels is None:
vis.add_bboxes(bbox3d=pred_bboxes)
else:
palette = np.random.randint(
0, 255, size=(pred_labels.max() + 1, 3)) / 256
labelDict = {}
for j in range(len(pred_labels)):
i = int(pred_labels[j].numpy())
if labelDict.get(i) is None:
labelDict[i] = []
labelDict[i].append(pred_bboxes[j])
for i in labelDict:
vis.add_bboxes(
bbox3d=np.array(labelDict[i]),
bbox_color=palette[i],
points_in_box_color=palette[i])
if gt_bboxes is not None:
vis.add_bboxes(bbox3d=gt_bboxes, bbox_color=(0, 0, 1))
show_path = osp.join(result_path,
f'{filename}_online.png') if snapshot else None
vis.show(show_path)
if points is not None:
_write_obj(points, osp.join(result_path, f'{filename}_points.obj'))
if gt_bboxes is not None:
# bottom center to gravity center
gt_bboxes[..., 2] += gt_bboxes[..., 5] / 2
_write_oriented_bbox(gt_bboxes,
osp.join(result_path, f'{filename}_gt.obj'))
if pred_bboxes is not None:
# bottom center to gravity center
pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
_write_oriented_bbox(pred_bboxes,
osp.join(result_path, f'{filename}_pred.obj'))