Cathy0908 54e9571423
add BEVFormer (#203)
* add BEVFormer and benchmark
2022-10-24 17:20:12 +08:00

461 lines
18 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) Alibaba, Inc. and its affiliates.
import copy
import numpy as np
import torch
try:
import open3d as o3d
from open3d import geometry
except ImportError:
o3d, geometry = None, None
def _draw_points(points,
vis,
points_size=2,
point_color=(0.5, 0.5, 0.5),
mode='xyz'):
"""Draw points on visualizer.
Args:
points (numpy.array | torch.tensor, shape=[N, 3+C]):
points to visualize.
vis (:obj:`open3d.visualization.Visualizer`): open3d visualizer.
points_size (int, optional): the size of points to show on visualizer.
Default: 2.
point_color (tuple[float], optional): the color of points.
Default: (0.5, 0.5, 0.5).
mode (str, optional): indicate type of the input points,
available mode ['xyz', 'xyzrgb']. Default: 'xyz'.
Returns:
tuple: points, color of each point.
"""
vis.get_render_option().point_size = points_size # set points size
if isinstance(points, torch.Tensor):
points = points.cpu().numpy()
points = points.copy()
pcd = geometry.PointCloud()
if mode == 'xyz':
pcd.points = o3d.utility.Vector3dVector(points[:, :3])
points_colors = np.tile(np.array(point_color), (points.shape[0], 1))
elif mode == 'xyzrgb':
pcd.points = o3d.utility.Vector3dVector(points[:, :3])
points_colors = points[:, 3:6]
# normalize to [0, 1] for open3d drawing
if not ((points_colors >= 0.0) & (points_colors <= 1.0)).all():
points_colors /= 255.0
else:
raise NotImplementedError
pcd.colors = o3d.utility.Vector3dVector(points_colors)
vis.add_geometry(pcd)
return pcd, points_colors
def _draw_bboxes(bbox3d,
vis,
points_colors,
pcd=None,
bbox_color=(0, 1, 0),
points_in_box_color=(1, 0, 0),
rot_axis=2,
center_mode='lidar_bottom',
mode='xyz'):
"""Draw bbox on visualizer and change the color of points inside bbox3d.
Args:
bbox3d (numpy.array | torch.tensor, shape=[M, 7]):
3d bbox (x, y, z, x_size, y_size, z_size, yaw) to visualize.
vis (:obj:`open3d.visualization.Visualizer`): open3d visualizer.
points_colors (numpy.array): color of each points.
pcd (:obj:`open3d.geometry.PointCloud`, optional): point cloud.
Default: None.
bbox_color (tuple[float], optional): the color of bbox.
Default: (0, 1, 0).
points_in_box_color (tuple[float], optional):
the color of points inside bbox3d. Default: (1, 0, 0).
rot_axis (int, optional): rotation axis of bbox. Default: 2.
center_mode (bool, optional): indicate the center of bbox is
bottom center or gravity center. available mode
['lidar_bottom', 'camera_bottom']. Default: 'lidar_bottom'.
mode (str, optional): indicate type of the input points,
available mode ['xyz', 'xyzrgb']. Default: 'xyz'.
"""
if isinstance(bbox3d, torch.Tensor):
bbox3d = bbox3d.cpu().numpy()
bbox3d = bbox3d.copy()
in_box_color = np.array(points_in_box_color)
for i in range(len(bbox3d)):
center = bbox3d[i, 0:3]
dim = bbox3d[i, 3:6]
yaw = np.zeros(3)
yaw[rot_axis] = bbox3d[i, 6]
rot_mat = geometry.get_rotation_matrix_from_xyz(yaw)
if center_mode == 'lidar_bottom':
center[rot_axis] += dim[
rot_axis] / 2 # bottom center to gravity center
elif center_mode == 'camera_bottom':
center[rot_axis] -= dim[
rot_axis] / 2 # bottom center to gravity center
box3d = geometry.OrientedBoundingBox(center, rot_mat, dim)
line_set = geometry.LineSet.create_from_oriented_bounding_box(box3d)
line_set.paint_uniform_color(bbox_color)
# draw bboxes on visualizer
vis.add_geometry(line_set)
# change the color of points which are in box
if pcd is not None and mode == 'xyz':
indices = box3d.get_point_indices_within_bounding_box(pcd.points)
points_colors[indices] = in_box_color
# update points colors
if pcd is not None:
pcd.colors = o3d.utility.Vector3dVector(points_colors)
vis.update_geometry(pcd)
def show_pts_boxes(points,
bbox3d=None,
show=True,
save_path=None,
points_size=2,
point_color=(0.5, 0.5, 0.5),
bbox_color=(0, 1, 0),
points_in_box_color=(1, 0, 0),
rot_axis=2,
center_mode='lidar_bottom',
mode='xyz'):
"""Draw bbox and points on visualizer.
Args:
points (numpy.array | torch.tensor, shape=[N, 3+C]):
points to visualize.
bbox3d (numpy.array | torch.tensor, shape=[M, 7], optional):
3D bbox (x, y, z, x_size, y_size, z_size, yaw) to visualize.
Defaults to None.
show (bool, optional): whether to show the visualization results.
Default: True.
save_path (str, optional): path to save visualized results.
Default: None.
points_size (int, optional): the size of points to show on visualizer.
Default: 2.
point_color (tuple[float], optional): the color of points.
Default: (0.5, 0.5, 0.5).
bbox_color (tuple[float], optional): the color of bbox.
Default: (0, 1, 0).
points_in_box_color (tuple[float], optional):
the color of points which are in bbox3d. Default: (1, 0, 0).
rot_axis (int, optional): rotation axis of bbox. Default: 2.
center_mode (bool, optional): indicate the center of bbox is bottom
center or gravity center. available mode
['lidar_bottom', 'camera_bottom']. Default: 'lidar_bottom'.
mode (str, optional): indicate type of the input points, available
mode ['xyz', 'xyzrgb']. Default: 'xyz'.
"""
# TODO: support score and class info
assert 0 <= rot_axis <= 2
# init visualizer
vis = o3d.visualization.Visualizer()
vis.create_window()
mesh_frame = geometry.TriangleMesh.create_coordinate_frame(
size=1, origin=[0, 0, 0]) # create coordinate frame
vis.add_geometry(mesh_frame)
# draw points
pcd, points_colors = _draw_points(points, vis, points_size, point_color,
mode)
# draw boxes
if bbox3d is not None:
_draw_bboxes(bbox3d, vis, points_colors, pcd, bbox_color,
points_in_box_color, rot_axis, center_mode, mode)
if show:
vis.run()
if save_path is not None:
vis.capture_screen_image(save_path)
vis.destroy_window()
def _draw_bboxes_ind(bbox3d,
vis,
indices,
points_colors,
pcd=None,
bbox_color=(0, 1, 0),
points_in_box_color=(1, 0, 0),
rot_axis=2,
center_mode='lidar_bottom',
mode='xyz'):
"""Draw bbox on visualizer and change the color or points inside bbox3d
with indices.
Args:
bbox3d (numpy.array | torch.tensor, shape=[M, 7]):
3d bbox (x, y, z, x_size, y_size, z_size, yaw) to visualize.
vis (:obj:`open3d.visualization.Visualizer`): open3d visualizer.
indices (numpy.array | torch.tensor, shape=[N, M]):
indicate which bbox3d that each point lies in.
points_colors (numpy.array): color of each points.
pcd (:obj:`open3d.geometry.PointCloud`, optional): point cloud.
Default: None.
bbox_color (tuple[float], optional): the color of bbox.
Default: (0, 1, 0).
points_in_box_color (tuple[float], optional):
the color of points which are in bbox3d. Default: (1, 0, 0).
rot_axis (int, optional): rotation axis of bbox. Default: 2.
center_mode (bool, optional): indicate the center of bbox is
bottom center or gravity center. available mode
['lidar_bottom', 'camera_bottom']. Default: 'lidar_bottom'.
mode (str, optional): indicate type of the input points,
available mode ['xyz', 'xyzrgb']. Default: 'xyz'.
"""
if isinstance(bbox3d, torch.Tensor):
bbox3d = bbox3d.cpu().numpy()
if isinstance(indices, torch.Tensor):
indices = indices.cpu().numpy()
bbox3d = bbox3d.copy()
in_box_color = np.array(points_in_box_color)
for i in range(len(bbox3d)):
center = bbox3d[i, 0:3]
dim = bbox3d[i, 3:6]
yaw = np.zeros(3)
# TODO: fix problem of current coordinate system
# dim[0], dim[1] = dim[1], dim[0] # for current coordinate
# yaw[rot_axis] = -(bbox3d[i, 6] - 0.5 * np.pi)
yaw[rot_axis] = -bbox3d[i, 6]
rot_mat = geometry.get_rotation_matrix_from_xyz(yaw)
if center_mode == 'lidar_bottom':
center[rot_axis] += dim[
rot_axis] / 2 # bottom center to gravity center
elif center_mode == 'camera_bottom':
center[rot_axis] -= dim[
rot_axis] / 2 # bottom center to gravity center
box3d = geometry.OrientedBoundingBox(center, rot_mat, dim)
line_set = geometry.LineSet.create_from_oriented_bounding_box(box3d)
line_set.paint_uniform_color(bbox_color)
# draw bboxes on visualizer
vis.add_geometry(line_set)
# change the color of points which are in box
if pcd is not None and mode == 'xyz':
points_colors[indices[:, i].astype(np.bool)] = in_box_color
# update points colors
if pcd is not None:
pcd.colors = o3d.utility.Vector3dVector(points_colors)
vis.update_geometry(pcd)
def show_pts_index_boxes(points,
bbox3d=None,
show=True,
indices=None,
save_path=None,
points_size=2,
point_color=(0.5, 0.5, 0.5),
bbox_color=(0, 1, 0),
points_in_box_color=(1, 0, 0),
rot_axis=2,
center_mode='lidar_bottom',
mode='xyz'):
"""Draw bbox and points on visualizer with indices that indicate which
bbox3d that each point lies in.
Args:
points (numpy.array | torch.tensor, shape=[N, 3+C]):
points to visualize.
bbox3d (numpy.array | torch.tensor, shape=[M, 7]):
3D bbox (x, y, z, x_size, y_size, z_size, yaw) to visualize.
Defaults to None.
show (bool, optional): whether to show the visualization results.
Default: True.
indices (numpy.array | torch.tensor, shape=[N, M], optional):
indicate which bbox3d that each point lies in. Default: None.
save_path (str, optional): path to save visualized results.
Default: None.
points_size (int, optional): the size of points to show on visualizer.
Default: 2.
point_color (tuple[float], optional): the color of points.
Default: (0.5, 0.5, 0.5).
bbox_color (tuple[float], optional): the color of bbox.
Default: (0, 1, 0).
points_in_box_color (tuple[float], optional):
the color of points which are in bbox3d. Default: (1, 0, 0).
rot_axis (int, optional): rotation axis of bbox. Default: 2.
center_mode (bool, optional): indicate the center of bbox is
bottom center or gravity center. available mode
['lidar_bottom', 'camera_bottom']. Default: 'lidar_bottom'.
mode (str, optional): indicate type of the input points,
available mode ['xyz', 'xyzrgb']. Default: 'xyz'.
"""
# TODO: support score and class info
assert 0 <= rot_axis <= 2
# init visualizer
vis = o3d.visualization.Visualizer()
vis.create_window()
mesh_frame = geometry.TriangleMesh.create_coordinate_frame(
size=1, origin=[0, 0, 0]) # create coordinate frame
vis.add_geometry(mesh_frame)
# draw points
pcd, points_colors = _draw_points(points, vis, points_size, point_color,
mode)
# draw boxes
if bbox3d is not None:
_draw_bboxes_ind(bbox3d, vis, indices, points_colors, pcd, bbox_color,
points_in_box_color, rot_axis, center_mode, mode)
if show:
vis.run()
if save_path is not None:
vis.capture_screen_image(save_path)
vis.destroy_window()
class Visualizer(object):
r"""Online visualizer implemented with Open3d.
Args:
points (numpy.array, shape=[N, 3+C]): Points to visualize. The Points
cloud is in mode of Coord3DMode.DEPTH (please refer to
core.structures.coord_3d_mode).
bbox3d (numpy.array, shape=[M, 7], optional): 3D bbox
(x, y, z, x_size, y_size, z_size, yaw) to visualize.
The 3D bbox is in mode of Box3DMode.DEPTH with
gravity_center (please refer to core.structures.box_3d_mode).
Default: None.
save_path (str, optional): path to save visualized results.
Default: None.
points_size (int, optional): the size of points to show on visualizer.
Default: 2.
point_color (tuple[float], optional): the color of points.
Default: (0.5, 0.5, 0.5).
bbox_color (tuple[float], optional): the color of bbox.
Default: (0, 1, 0).
points_in_box_color (tuple[float], optional):
the color of points which are in bbox3d. Default: (1, 0, 0).
rot_axis (int, optional): rotation axis of bbox. Default: 2.
center_mode (bool, optional): indicate the center of bbox is
bottom center or gravity center. available mode
['lidar_bottom', 'camera_bottom']. Default: 'lidar_bottom'.
mode (str, optional): indicate type of the input points,
available mode ['xyz', 'xyzrgb']. Default: 'xyz'.
"""
def __init__(self,
points,
bbox3d=None,
save_path=None,
points_size=2,
point_color=(0.5, 0.5, 0.5),
bbox_color=(0, 1, 0),
points_in_box_color=(1, 0, 0),
rot_axis=2,
center_mode='lidar_bottom',
mode='xyz'):
super(Visualizer, self).__init__()
assert 0 <= rot_axis <= 2
# init visualizer
self.o3d_visualizer = o3d.visualization.Visualizer()
self.o3d_visualizer.create_window()
mesh_frame = geometry.TriangleMesh.create_coordinate_frame(
size=1, origin=[0, 0, 0]) # create coordinate frame
self.o3d_visualizer.add_geometry(mesh_frame)
self.points_size = points_size
self.point_color = point_color
self.bbox_color = bbox_color
self.points_in_box_color = points_in_box_color
self.rot_axis = rot_axis
self.center_mode = center_mode
self.mode = mode
self.seg_num = 0
# draw points
if points is not None:
self.pcd, self.points_colors = _draw_points(
points, self.o3d_visualizer, points_size, point_color, mode)
# draw boxes
if bbox3d is not None:
_draw_bboxes(bbox3d, self.o3d_visualizer, self.points_colors,
self.pcd, bbox_color, points_in_box_color, rot_axis,
center_mode, mode)
def add_bboxes(self, bbox3d, bbox_color=None, points_in_box_color=None):
"""Add bounding box to visualizer.
Args:
bbox3d (numpy.array, shape=[M, 7]):
3D bbox (x, y, z, x_size, y_size, z_size, yaw)
to be visualized. The 3d bbox is in mode of
Box3DMode.DEPTH with gravity_center (please refer to
core.structures.box_3d_mode).
bbox_color (tuple[float]): the color of bbox. Default: None.
points_in_box_color (tuple[float]): the color of points which
are in bbox3d. Default: None.
"""
if bbox_color is None:
bbox_color = self.bbox_color
if points_in_box_color is None:
points_in_box_color = self.points_in_box_color
_draw_bboxes(bbox3d, self.o3d_visualizer, self.points_colors, self.pcd,
bbox_color, points_in_box_color, self.rot_axis,
self.center_mode, self.mode)
def add_seg_mask(self, seg_mask_colors):
"""Add segmentation mask to visualizer via per-point colorization.
Args:
seg_mask_colors (numpy.array, shape=[N, 6]):
The segmentation mask whose first 3 dims are point coordinates
and last 3 dims are converted colors.
"""
# we can't draw the colors on existing points
# in case gt and pred mask would overlap
# instead we set a large offset along x-axis for each seg mask
self.seg_num += 1
offset = (np.array(self.pcd.points).max(0) -
np.array(self.pcd.points).min(0))[0] * 1.2 * self.seg_num
mesh_frame = geometry.TriangleMesh.create_coordinate_frame(
size=1, origin=[offset, 0, 0]) # create coordinate frame for seg
self.o3d_visualizer.add_geometry(mesh_frame)
seg_points = copy.deepcopy(seg_mask_colors)
seg_points[:, 0] += offset
_draw_points(
seg_points, self.o3d_visualizer, self.points_size, mode='xyzrgb')
def show(self, save_path=None):
"""Visualize the points cloud.
Args:
save_path (str, optional): path to save image. Default: None.
"""
self.o3d_visualizer.run()
if save_path is not None:
self.o3d_visualizer.capture_screen_image(save_path)
self.o3d_visualizer.destroy_window()
return