tuofeilun 654554cf65
support obj365 (#242)
Support Objects365 pretrain and Adding the DINO++ model can achieve an accuracy of 63.4mAP at a model scale of 200M(Under the same scale, the accuracy is the best)
2022-12-02 14:33:01 +08:00

165 lines
6.4 KiB
Python

from distutils.version import LooseVersion
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from easycv.models.detection.utils import box_cxcywh_to_xyxy
class DetrPostProcess(nn.Module):
""" This module converts the model's output into the format expected by the coco api"""
def __init__(self,
num_select=None,
use_centerness=False,
use_iouaware=False) -> None:
super().__init__()
self.num_select = num_select
self.use_centerness = use_centerness
self.use_iouaware = use_iouaware
@torch.no_grad()
def forward(self, outputs, target_sizes, img_metas):
""" Perform the computation
Parameters:
outputs: raw outputs of the model
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
For evaluation, this must be the original image size (before any data augmentation)
For visualization, this should be the image size after data augment, but before padding
"""
out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes']
assert len(out_logits) == len(target_sizes)
assert target_sizes.shape[1] == 2
if self.num_select is None:
prob = F.softmax(out_logits, -1)
scores, labels = prob[..., :-1].max(-1)
boxes = box_cxcywh_to_xyxy(out_bbox)
# and from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h],
dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
else:
if self.use_centerness and self.use_iouaware:
prob = out_logits.sigmoid(
)**0.45 * outputs['pred_centers'].sigmoid(
)**0.05 * outputs['pred_ious'].sigmoid()**0.5
elif self.use_centerness:
prob = out_logits.sigmoid() * outputs['pred_centers'].sigmoid()
elif self.use_iouaware:
prob = out_logits.sigmoid() * outputs['pred_ious'].sigmoid()
else:
prob = out_logits.sigmoid()
topk_values, topk_indexes = torch.topk(
prob.view(out_logits.shape[0], -1), self.num_select, dim=1)
scores = topk_values
topk_boxes = topk_indexes // out_logits.shape[2]
labels = topk_indexes % out_logits.shape[2]
boxes = box_cxcywh_to_xyxy(out_bbox)
boxes = torch.gather(boxes, 1,
topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
# and from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h],
dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
results = {
'detection_boxes': [boxes[0].cpu().numpy()],
'detection_scores': [scores[0].cpu().numpy()],
'detection_classes': [labels[0].cpu().numpy().astype(np.int32)],
'img_metas': img_metas
}
return results
def output_postprocess(outputs, img_metas=None):
detection_boxes = []
detection_scores = []
detection_classes = []
img_metas_list = []
for i in range(len(outputs)):
if img_metas:
img_metas_list.append(img_metas[i])
if outputs[i] is not None:
bboxes = outputs[i][:, 0:4] if outputs[i] is not None else None
if img_metas:
bboxes /= img_metas[i]['scale_factor'][0]
detection_boxes.append(bboxes.cpu().numpy())
detection_scores.append(
(outputs[i][:, 4] * outputs[i][:, 5]).cpu().numpy())
detection_classes.append(outputs[i][:, 6].cpu().numpy().astype(
np.int32))
else:
detection_boxes.append(None)
detection_scores.append(None)
detection_classes.append(None)
test_outputs = {
'detection_boxes': detection_boxes,
'detection_scores': detection_scores,
'detection_classes': detection_classes,
'img_metas': img_metas_list
}
return test_outputs
# refer to easycv/models/detection/detectors/yolox/postprocess.py and test.py to rebuild a torch-blade-trtplugin NMS, which is checked by zhoulou in test.py
# infer docker images is : registry.cn-shanghai.aliyuncs.com/pai-ai-test/eas-service:easycv_blade_181_export
def postprocess(prediction, num_classes, conf_thre=0.7, nms_thre=0.45):
box_corner = prediction.new(prediction.shape)
box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2
box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2
box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2
box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2
prediction[:, :, :4] = box_corner[:, :, :4]
output = [None for _ in range(len(prediction))]
for i, image_pred in enumerate(prediction):
# If none are remaining => process next image
if not image_pred.numel():
continue
# Get score and class with highest confidence
class_conf, class_pred = torch.max(
image_pred[:, 5:5 + num_classes], 1, keepdim=True)
conf_mask = (image_pred[:, 4] * class_conf.squeeze() >=
conf_thre).squeeze()
# Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred)
detections = torch.cat(
(image_pred[:, :5], class_conf, class_pred.float()), 1)
detections = detections[conf_mask]
if not detections.numel():
continue
if LooseVersion(torchvision.__version__) >= LooseVersion('0.8.0'):
nms_out_index = torchvision.ops.batched_nms(
detections[:, :4], detections[:, 4] * detections[:, 5],
detections[:, 6], nms_thre)
else:
nms_out_index = torchvision.ops.nms(
detections[:, :4], detections[:, 4] * detections[:, 5],
nms_thre)
detections = detections[nms_out_index]
if output[i] is None:
output[i] = detections
else:
output[i] = torch.cat((output[i], detections))
return output