EasyCV/tests/models/backbones/test_deitiii.py
zzoneee 0cb91de0cb
add DeiT III (#171)
1.Add a backbone: deitiii.
2.Add an optimizer: lamb. 
3.Add a sampler: RASampler. 
4.Add a lr update hook: CosineAnnealingWarmupByEpochLrUpdaterHook.
5.In easycv/models/classification/classification.py, I remove the default mixup_cfg to keep the classification.py clean.
2022-09-14 15:24:54 +08:00

43 lines
1.5 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
import numpy as np
import torch
from numpy.testing import assert_array_almost_equal
class DeiTIIITest(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
@unittest.skip('skip DeiT III unittest')
def test_deitiii(self):
model_path = 'http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/classification/deitiii/epoch_800.pth'
config_path = 'configs/classification/imagenet/vit/imagenet_deitiii_large_patch16_192_jpg.py'
img = 'https://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/demo/deitiii_demo.JPEG'
# deitiii = ClsPredictor(model_path, config_path)
deitiii = []
output = deitiii.predict(img)
self.assertIn('prob', output)
self.assertIn('class', output)
self.assertEqual(len(output['prob'][0]), 1000)
assert_array_almost_equal(
output['prob'][0][:10],
torch.Tensor([
2.04629918698628899e-06, 5.27398606209317222e-06,
5.52915162188583054e-06, 3.60625563189387321e-06,
3.29447357216849923e-06, 5.61309570912271738e-06,
8.93703327164985240e-06, 4.89157764604897238e-06,
4.39371024185675196e-06, 5.21611764270346612e-06
]),
decimal=8)
self.assertEqual(int(output['class']), 948)
if __name__ == '__main__':
unittest.main()