mirror of
https://github.com/alibaba/EasyCV.git
synced 2025-06-03 14:49:00 +08:00
* avoid numpy version check when xtcocotools can be imported Link: https://code.alibaba-inc.com/pai-vision/EasyCV/codereview/10377599 * * move thirdparty into easycv * fix code style Link: https://code.alibaba-inc.com/pai-vision/EasyCV/codereview/10395748 * move thirdparty into easycv * fix missing thirdparty/deformable_attention/src when build package * optimize ci_test * update version to 0.6.3.8 Link: https://code.alibaba-inc.com/pai-vision/EasyCV/codereview/10412059 * update version to 0.6.3.8 * fix face keypoints bugs in FT * update version to 0.6.3.9 Link: https://code.alibaba-inc.com/pai-vision/EasyCV/codereview/10443200 * update version to 0.6.3.9 * fix import thirdparty * fix unittest * fix unittest Co-authored-by: wenmeng.zwm <wenmeng.zwm@alibaba-inc.com> Co-authored-by: shouzhou.bx <shouzhou.bx@alibaba-inc.com>
40 lines
1.3 KiB
Python
40 lines
1.3 KiB
Python
import os
|
|
import unittest
|
|
|
|
import numpy as np
|
|
from PIL import Image
|
|
from tests.ut_config import TEST_IMAGES_DIR
|
|
|
|
from easycv.predictors.builder import build_predictor
|
|
from easycv.thirdparty.u2sod.sodpredictor import SODPredictor
|
|
|
|
bbox_res = [[0, 1077, 1, 1079], [147, 871, 148, 873], [172, 196, 197, 218],
|
|
[266, 68, 267, 70], [676, 0, 679, 2], [104, 0, 507, 1008]]
|
|
|
|
|
|
class SODPredictorTest(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
|
|
def test_sodpredictor(self):
|
|
sodpredictor = SODPredictor(model_name='u2netp')
|
|
image = Image.open(os.path.join(TEST_IMAGES_DIR, 'u2sod_bottle.jpg'))
|
|
# bboxes, landmarks = detector.detect(image)
|
|
res = sodpredictor.predict([image])
|
|
bbox = np.array(res[0]['bbox'])
|
|
self.assertTrue(np.allclose(bbox, np.array(bbox_res)))
|
|
|
|
def test_ev_sodpredictor(self):
|
|
sod_cfg = dict(type='SODPredictor', model_name='u2netp')
|
|
sodpredictor = build_predictor(sod_cfg)
|
|
image = Image.open(os.path.join(TEST_IMAGES_DIR, 'u2sod_bottle.jpg'))
|
|
# bboxes, landmarks = detector.detect(image)
|
|
res = sodpredictor.predict([image])
|
|
bbox = np.array(res[0]['bbox'])
|
|
self.assertTrue(np.allclose(bbox, np.array(bbox_res)))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|