mirror of
https://github.com/alibaba/EasyCV.git
synced 2025-06-03 14:49:00 +08:00
79 lines
2.1 KiB
Python
79 lines
2.1 KiB
Python
_base_ = '../../base.py'
|
|
|
|
# model settings
|
|
model = dict(
|
|
type='MOCO',
|
|
pretrained=False,
|
|
train_preprocess=['gaussianBlur'],
|
|
queue_len=65536,
|
|
feat_dim=128,
|
|
momentum=0.999,
|
|
backbone=dict(
|
|
type='ResNet',
|
|
depth=50,
|
|
in_channels=3,
|
|
out_indices=[4], # 0: conv-1, x: stage-x
|
|
norm_cfg=dict(type='BN')),
|
|
neck=dict(
|
|
type='NonLinearNeckV1',
|
|
in_channels=2048,
|
|
hid_channels=2048,
|
|
out_channels=128,
|
|
with_avg_pool=True),
|
|
head=dict(type='ContrastiveHead', temperature=0.2))
|
|
|
|
# dataset settings
|
|
data_train_list = 'imagenet_raw/meta/train.txt'
|
|
data_train_root = 'imagenet_raw/'
|
|
dataset_type = 'MultiViewDataset'
|
|
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
train_pipeline = [
|
|
dict(type='RandomResizedCrop', size=224, scale=(0.2, 1.)),
|
|
dict(
|
|
type='RandomAppliedTrans',
|
|
transforms=[
|
|
dict(
|
|
type='ColorJitter',
|
|
brightness=0.4,
|
|
contrast=0.4,
|
|
saturation=0.4,
|
|
hue=0.4)
|
|
],
|
|
p=0.8),
|
|
dict(type='RandomGrayscale', p=0.2),
|
|
# dict(
|
|
# type='RandomAppliedTrans',
|
|
# transforms=[
|
|
# dict(
|
|
# type='GaussianBlur',
|
|
# kernel_size=23,
|
|
# sigma = (0.1, 2.0)
|
|
# )
|
|
# ],
|
|
# p=0.5),
|
|
dict(type='RandomHorizontalFlip'),
|
|
dict(type='ToTensor'),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
dict(type='Collect', keys=['img'])
|
|
]
|
|
data = dict(
|
|
imgs_per_gpu=32, # total 32*8=256
|
|
workers_per_gpu=4,
|
|
drop_last=True,
|
|
train=dict(
|
|
type=dataset_type,
|
|
data_source=dict(
|
|
type='SSLSourceImageList',
|
|
list_file=data_train_list,
|
|
root=data_train_root),
|
|
num_views=[1, 1],
|
|
pipelines=[train_pipeline, train_pipeline]))
|
|
# optimizer
|
|
optimizer = dict(type='SGD', lr=0.03, weight_decay=0.0001, momentum=0.9)
|
|
# learning policy
|
|
lr_config = dict(policy='step', step=[120, 160])
|
|
# lr_config = dict(policy='CosineAnnealing', min_lr=0.)
|
|
checkpoint_config = dict(interval=10)
|
|
# runtime settings
|
|
total_epochs = 200
|