EasyCV/configs/segmentation/segformer/segformer_b5_coco.py

133 lines
5.1 KiB
Python

_base_ = './segformer_b0_coco.py'
CLASSES = [
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush', 'banner', 'blanket', 'branch', 'bridge',
'building-other', 'bush', 'cabinet', 'cage', 'cardboard', 'carpet',
'ceiling-other', 'ceiling-tile', 'cloth', 'clothes', 'clouds', 'counter',
'cupboard', 'curtain', 'desk-stuff', 'dirt', 'door-stuff', 'fence',
'floor-marble', 'floor-other', 'floor-stone', 'floor-tile', 'floor-wood',
'flower', 'fog', 'food-other', 'fruit', 'furniture-other', 'grass',
'gravel', 'ground-other', 'hill', 'house', 'leaves', 'light', 'mat',
'metal', 'mirror-stuff', 'moss', 'mountain', 'mud', 'napkin', 'net',
'paper', 'pavement', 'pillow', 'plant-other', 'plastic', 'platform',
'playingfield', 'railing', 'railroad', 'river', 'road', 'rock', 'roof',
'rug', 'salad', 'sand', 'sea', 'shelf', 'sky-other', 'skyscraper', 'snow',
'solid-other', 'stairs', 'stone', 'straw', 'structural-other', 'table',
'tent', 'textile-other', 'towel', 'tree', 'vegetable', 'wall-brick',
'wall-concrete', 'wall-other', 'wall-panel', 'wall-stone', 'wall-tile',
'wall-wood', 'water-other', 'waterdrops', 'window-blind', 'window-other',
'wood'
]
model = dict(
pretrained=
'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segformer/mit_b5_20220624-658746d9.pth',
backbone=dict(
embed_dims=64,
num_layers=[3, 6, 40, 3],
),
decode_head=dict(
in_channels=[64, 128, 320, 512],
channels=768,
),
)
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
img_scale = (2048, 640)
crop_size = (640, 640)
train_pipeline = [
dict(type='MMResize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
dict(type='SegRandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='MMRandomFlip', flip_ratio=0.5),
dict(type='MMPhotoMetricDistortion'),
dict(type='MMNormalize', **img_norm_cfg),
dict(type='MMPad', size=crop_size, pad_val=dict(img=0, masks=0, seg=255)),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_semantic_seg'],
meta_keys=('filename', 'ori_filename', 'ori_shape', 'img_shape',
'pad_shape', 'scale_factor', 'flip', 'flip_direction',
'img_norm_cfg')),
]
test_pipeline = [
dict(
type='MMMultiScaleFlipAug',
img_scale=img_scale,
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='MMResize', keep_ratio=True),
dict(type='MMRandomFlip'),
dict(type='MMNormalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(
type='Collect',
keys=['img'],
meta_keys=('filename', 'ori_filename', 'ori_shape',
'img_shape', 'pad_shape', 'scale_factor', 'flip',
'flip_direction', 'img_norm_cfg')),
])
]
data_root = './data/coco_stuff164k/'
# dataset settings
data_type = 'SegSourceRaw'
data_root = 'data/VOCdevkit/VOC2012'
train_img_root = data_root + 'JPEGImages'
train_label_root = data_root + 'SegmentationClass'
train_list_file = data_root + 'ImageSets/Segmentation/train.txt'
val_img_root = data_root + 'JPEGImages'
val_label_root = data_root + 'SegmentationClass'
val_list_file = data_root + 'ImageSets/Segmentation/val.txt'
test_batch_size = 2
data = dict(
imgs_per_gpu=2,
workers_per_gpu=2,
train=dict(
type='SegDataset',
ignore_index=255,
data_source=dict(
type=data_type,
img_suffix='.jpg',
label_suffix='.png',
img_root=train_img_root,
label_root=train_label_root,
split=train_list_file,
classes=CLASSES,
),
pipeline=train_pipeline),
val=dict(
imgs_per_gpu=test_batch_size,
ignore_index=255,
type='SegDataset',
data_source=dict(
type=data_type,
img_suffix='.jpg',
label_suffix='.png',
img_root=val_img_root,
label_root=val_label_root,
split=val_list_file,
classes=CLASSES,
),
pipeline=test_pipeline),
)