EasyCV/easycv/models/backbones/clip_bert.py

584 lines
22 KiB
Python

# flake8: noqa
# modified from https://github.com/jayleicn/ClipBERT
import math
import sys
import torch
from torch import nn
from transformers.modeling_utils import PreTrainedModel
from ..registry import BACKBONES
ACT2FN = {'gelu': nn.GELU(), 'relu': torch.nn.functional.relu}
class BertLayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(BertLayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings.
"""
def __init__(self, config):
super(BertEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(
config.vocab_size, config.hidden_size, padding_idx=0)
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, padding_idx=0)
self.token_type_embeddings = nn.Embedding(
config.type_vocab_size, config.hidden_size, padding_idx=0)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None):
seq_length = input_ids.size(1)
position_ids = torch.arange(
seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
words_embeddings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = words_embeddings + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertPooler(nn.Module):
def __init__(self, config):
super(BertPooler, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertIntermediate(nn.Module):
def __init__(self, config):
super(BertIntermediate, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act,
str) or (sys.version_info[0] == 2
and isinstance(config.hidden_act, unicode)):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
def __init__(self, config):
super(BertOutput, self).__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertPreTrainedModel(PreTrainedModel):
from transformers import BertConfig
config_class = BertConfig
# load_tf_weights = load_tf_weights_in_bert
base_model_prefix = 'bert'
def _init_weights(self, module):
""" Initialize the weights """
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(
mean=0.0, std=self.config.initializer_range)
elif isinstance(module, BertLayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
class VisualInputEmbedding(nn.Module):
"""
Takes input of both image and video (multi-frame)
"""
def __init__(self, config):
super(VisualInputEmbedding, self).__init__()
self.config = config
# sequence embedding
self.position_embeddings = nn.Embedding(config.max_position_embeddings,
config.hidden_size)
self.row_position_embeddings = nn.Embedding(
config.max_grid_row_position_embeddings, config.hidden_size)
self.col_position_embeddings = nn.Embedding(
config.max_grid_col_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(1, config.hidden_size)
self.LayerNorm = BertLayerNorm(
config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, grid):
"""
Args:
grid: (B, n_frm, H, W, C), note that #frm can be 1
Returns:
"""
bsz, _, _, _, hsz = grid.shape
# temporal mean pooling
# grid = grid.mean(1) # (B, H, W, d)
grid = self.add_2d_positional_embeddings(grid) # (B, H, W, d)
# image token sequence
visual_tokens = grid.view(bsz, -1, hsz) # (B, H*W, d)
# perform random sampling. It is only used in training phase
# of pre-training, but not used in inference or downstream tasks.
# if hasattr(self.config, "pixel_random_sampling_size") and \
# self.config.pixel_random_sampling_size > 0 and self.training:
# sampled_indices = get_random_sample_indices(
# seq_len=visual_tokens.shape[1],
# num_samples=self.config.pixel_random_sampling_size,
# device=visual_tokens.device
# )
# visual_tokens = visual_tokens.index_select(
# dim=1, index=sampled_indices) # (B, #samples, d)
visual_tokens_shape = visual_tokens.shape[:-1] # (B, H*W)
device = visual_tokens.device
# image token type embeddings.
token_type_ids = torch.zeros(
visual_tokens_shape, dtype=torch.long, device=device)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
# embeddings = visual_tokens + position_embeddings + token_type_embeddings
embeddings = visual_tokens + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings # (B, H*W, d)
def add_temporal_postion_embeddings(self, grid):
"""
Args:
grid: (B, n_frms, H, W, d)
Returns:
(B, n_frms, H, W, d)
"""
n_frms, height, width, hsz = grid.shape[-4:]
# add row-wise position embeddings
temporal_position_ids = torch.arange(
n_frms, dtype=torch.long, device=grid.device) # (n_frms, )
t_position_embeddings = self.temporal_position_embeddings(
temporal_position_ids) # (n_frms, d)
new_shape = (1, n_frms, 1, 1, hsz) # (1, n_frms, 1, 1, d)
grid = grid + t_position_embeddings.view(
*new_shape) # broadcast automatically
return grid
def add_2d_positional_embeddings(self, grid):
"""
Args:
grid: (B, *, H, W, d)
Returns:
(B, *, H, W, d)
"""
height, width, hsz = grid.shape[-3:]
# add row-wise position embeddings
row_position_ids = torch.arange(
height, dtype=torch.long, device=grid.device) # (H, )
row_position_embeddings = self.row_position_embeddings(
row_position_ids) # (H, d)
row_shape = (1, ) * (len(grid.shape) - 3) + (height, 1, hsz
) # (1, *1, H, 1, d)
grid = grid + row_position_embeddings.view(
*row_shape) # broadcast automatically
# add column-wise position embeddings
col_position_ids = torch.arange(
width, dtype=torch.long, device=grid.device) # (W, )
col_position_embeddings = self.col_position_embeddings(
col_position_ids) # (W, d)
col_shape = (1, ) * (len(grid.shape) - 3) + (1, width, hsz
) # (1, *1, 1, W, d)
grid = grid + col_position_embeddings.view(
*col_shape) # broadcast automatically
return grid
class BertLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = BertAttention(config)
self.is_decoder = config.is_decoder
if self.is_decoder:
self.crossattention = BertAttention(config)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
):
self_attention_outputs = self.attention(hidden_states, attention_mask,
head_mask)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[
1:] # add self attentions if we output attention weights
if self.is_decoder and encoder_hidden_states is not None:
cross_attention_outputs = self.crossattention(
attention_output, attention_mask, head_mask,
encoder_hidden_states, encoder_attention_mask)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[
1:] # add cross attentions if we output attention weights
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
outputs = (layer_output, ) + outputs
return outputs
class BertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.layer = nn.ModuleList(
[BertLayer(config) for _ in range(config.num_hidden_layers)])
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
):
all_hidden_states = ()
all_attentions = ()
for i, layer_module in enumerate(self.layer):
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states, )
layer_outputs = layer_module(hidden_states, attention_mask,
head_mask[i], encoder_hidden_states,
encoder_attention_mask)
hidden_states = layer_outputs[0]
if self.output_attentions:
all_attentions = all_attentions + (layer_outputs[1], )
# Add last layer
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states, )
outputs = (hidden_states, )
if self.output_hidden_states:
outputs = outputs + (all_hidden_states, )
if self.output_attentions:
outputs = outputs + (all_attentions, )
return outputs # last-layer hidden state, (all hidden states), (all attentions)
class BertSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and\
not hasattr(config, 'embedding_size'):
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention '
'heads (%d)' %
(config.hidden_size, config.num_attention_heads))
self.output_attentions = config.output_attentions
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size /
config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads,
self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
):
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
if encoder_hidden_states is not None:
mixed_key_layer = self.key(encoder_hidden_states)
mixed_value_layer = self.value(encoder_hidden_states)
attention_mask = encoder_attention_mask
else:
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key"
# to get the raw attention scores.
attention_scores = torch.matmul(query_layer,
key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(
self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is
# (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (
self.all_head_size, )
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer,
attention_probs) if self.output_attentions else (
context_layer, )
return outputs
class BertSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(
config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
self.pruned_heads = set()
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
):
self_outputs = self.self(hidden_states, attention_mask, head_mask,
encoder_hidden_states, encoder_attention_mask)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,
) + self_outputs[1:] # add attentions if we output them
return outputs
class ClipBertBaseModel(BertPreTrainedModel):
def __init__(self, config_text, config_cross):
super().__init__(config_text)
self.config_text = config_text
self.config_cross = config_cross
self.embeddings = BertEmbeddings(config_text)
self.encoder_text = BertEncoder(config_text)
self.encoder_co = BertEncoder(config_cross)
self.pooler = BertPooler(config_cross)
self.init_weights()
def forward(self, text_input_ids, visual_inputs, attention_mask):
input_shape = text_input_ids.size()
device = text_input_ids.device
text_embedding_output = self.embeddings(
input_ids=text_input_ids) # (B, Lt, D)
extended_attention_mask: torch.Tensor =\
self.get_extended_attention_mask(
attention_mask, input_shape, device)
encoder_outputs_text = self.encoder_text(
text_embedding_output,
attention_mask=extended_attention_mask,
head_mask=self.get_head_mask(
None, self.config_text.num_hidden_layers) # required input
)
sequence_output_text = encoder_outputs_text[0]
bsz, hsz = visual_inputs.shape[0], visual_inputs.shape[-1]
# visual_embedding_output = visual_inputs.view(bsz, -1, hsz)
visual_embedding_output = visual_inputs.reshape(bsz, -1, hsz)
visual_attention_mask = attention_mask.new_ones(
visual_embedding_output.shape[:2])
attention_mask = torch.cat([attention_mask, visual_attention_mask],
dim=-1) # (B, lt+Lv, d)
embedding_output = torch.cat(
[sequence_output_text, visual_embedding_output],
dim=1) # (B, Lt+Lv, d)
extended_attention_mask: torch.Tensor =\
self.get_extended_attention_mask(
attention_mask, input_shape, device)
encoder_outputs = self.encoder_co(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=self.get_head_mask(
None, self.config_cross.num_hidden_layers) # required input
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output)
outputs = (
sequence_output,
pooled_output,
) + encoder_outputs[1:]
return outputs
@BACKBONES.register_module()
class ClipBertClassification(BertPreTrainedModel):
def __init__(self, config_text, config_cross):
from transformers import BertConfig
config_text = BertConfig(**config_text)
config_cross = BertConfig(**config_cross)
super(ClipBertClassification, self).__init__(config_text)
self.bert = ClipBertBaseModel(config_text, config_cross)
self.dropout = nn.Dropout(config_text.hidden_dropout_prob)
self.classifier = nn.Sequential(
nn.Linear(config_text.hidden_size, config_text.hidden_size * 2),
nn.ReLU(True),
nn.Linear(config_text.hidden_size * 2, config_cross.num_labels))
self.init_weights()
def forward(self, text_input_ids, visual_inputs, text_input_mask):
outputs = self.bert(
text_input_ids=text_input_ids,
visual_inputs=visual_inputs,
attention_mask=
text_input_mask, # (B, Lt) note this mask is text only!!!
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
return logits
def init_weights(self, pretrained=None):
if pretrained == None:
self.apply(self._init_weights)
else:
if isinstance(pretrained, str):
loaded_state_dict = torch.load(pretrained, map_location='cpu')
else:
loaded_state_dict = pretrained
model_keys = set([k for k in list(self.state_dict().keys())])
load_keys = set(loaded_state_dict.keys())
toload = {}
mismatched_shape_keys = []
for k in model_keys:
k_rename = k.replace('encoder_text', 'encoder')
k_rename = k_rename.replace('encoder_co', 'encoder')
if k_rename in load_keys:
if self.state_dict(
)[k].shape != loaded_state_dict[k_rename].shape:
mismatched_shape_keys.append(k)
else:
toload[k] = loaded_state_dict[k_rename]
self.load_state_dict(toload, strict=False)