mirror of https://github.com/alibaba/EasyCV.git
204 lines
6.8 KiB
Python
204 lines
6.8 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from .network_blocks import (BaseConv, CSPLayer, DWConv, Focus, ResLayer,
|
|
SPPBottleneck, SPPFBottleneck)
|
|
|
|
|
|
class Darknet(nn.Module):
|
|
# number of blocks from dark2 to dark5.
|
|
depth2blocks = {21: [1, 2, 2, 1], 53: [2, 8, 8, 4]}
|
|
|
|
def __init__(self,
|
|
depth,
|
|
in_channels=3,
|
|
stem_out_channels=32,
|
|
out_features=('dark3', 'dark4', 'dark5')):
|
|
"""
|
|
Args:
|
|
depth (int): depth of darknet used in model, usually use [21, 53] for this param.
|
|
in_channels (int): number of input channels, for example, use 3 for RGB image.
|
|
stem_out_channels (int): number of output chanels of darknet stem.
|
|
It decides channels of darknet layer2 to layer5.
|
|
out_features (Tuple[str]): desired output layer name.
|
|
"""
|
|
super().__init__()
|
|
assert out_features, 'please provide output features of Darknet'
|
|
self.out_features = out_features
|
|
self.stem = nn.Sequential(
|
|
BaseConv(
|
|
in_channels, stem_out_channels, ksize=3, stride=1,
|
|
act='lrelu'),
|
|
*self.make_group_layer(stem_out_channels, num_blocks=1, stride=2),
|
|
)
|
|
in_channels = stem_out_channels * 2 # 64
|
|
|
|
num_blocks = Darknet.depth2blocks[depth]
|
|
# create darknet with `stem_out_channels` and `num_blocks` layers.
|
|
# to make model structure more clear, we don't use `for` statement in python.
|
|
self.dark2 = nn.Sequential(
|
|
*self.make_group_layer(in_channels, num_blocks[0], stride=2))
|
|
in_channels *= 2 # 128
|
|
self.dark3 = nn.Sequential(
|
|
*self.make_group_layer(in_channels, num_blocks[1], stride=2))
|
|
in_channels *= 2 # 256
|
|
self.dark4 = nn.Sequential(
|
|
*self.make_group_layer(in_channels, num_blocks[2], stride=2))
|
|
in_channels *= 2 # 512
|
|
|
|
self.dark5 = nn.Sequential(
|
|
*self.make_group_layer(in_channels, num_blocks[3], stride=2),
|
|
*self.make_spp_block([in_channels, in_channels * 2],
|
|
in_channels * 2),
|
|
)
|
|
|
|
def make_group_layer(self,
|
|
in_channels: int,
|
|
num_blocks: int,
|
|
stride: int = 1):
|
|
'starts with conv layer then has `num_blocks` `ResLayer`'
|
|
return [
|
|
BaseConv(
|
|
in_channels,
|
|
in_channels * 2,
|
|
ksize=3,
|
|
stride=stride,
|
|
act='lrelu'),
|
|
*[(ResLayer(in_channels * 2)) for _ in range(num_blocks)],
|
|
]
|
|
|
|
def make_spp_block(self, filters_list, in_filters):
|
|
m = nn.Sequential(*[
|
|
BaseConv(in_filters, filters_list[0], 1, stride=1, act='lrelu'),
|
|
BaseConv(
|
|
filters_list[0], filters_list[1], 3, stride=1, act='lrelu'),
|
|
SPPBottleneck(
|
|
in_channels=filters_list[1],
|
|
out_channels=filters_list[0],
|
|
activation='lrelu',
|
|
),
|
|
BaseConv(
|
|
filters_list[0], filters_list[1], 3, stride=1, act='lrelu'),
|
|
BaseConv(
|
|
filters_list[1], filters_list[0], 1, stride=1, act='lrelu'),
|
|
])
|
|
return m
|
|
|
|
def forward(self, x):
|
|
outputs = {}
|
|
x = self.stem(x)
|
|
outputs['stem'] = x
|
|
x = self.dark2(x)
|
|
outputs['dark2'] = x
|
|
x = self.dark3(x)
|
|
outputs['dark3'] = x
|
|
x = self.dark4(x)
|
|
outputs['dark4'] = x
|
|
x = self.dark5(x)
|
|
outputs['dark5'] = x
|
|
return {k: v for k, v in outputs.items() if k in self.out_features}
|
|
|
|
|
|
class CSPDarknet(nn.Module):
|
|
|
|
def __init__(self,
|
|
dep_mul,
|
|
wid_mul,
|
|
out_features=('dark3', 'dark4', 'dark5'),
|
|
depthwise=False,
|
|
act='silu',
|
|
spp_type='spp'):
|
|
super().__init__()
|
|
assert out_features, 'please provide output features of Darknet'
|
|
self.out_features = out_features
|
|
Conv = DWConv if depthwise else BaseConv
|
|
|
|
base_channels = int(wid_mul * 64) # 64
|
|
base_depth = max(round(dep_mul * 3), 1) # 3
|
|
|
|
# stem
|
|
self.stem = Focus(3, base_channels, ksize=3, act=act)
|
|
|
|
# dark2
|
|
self.dark2 = nn.Sequential(
|
|
Conv(base_channels, base_channels * 2, 3, 2, act=act),
|
|
CSPLayer(
|
|
base_channels * 2,
|
|
base_channels * 2,
|
|
n=base_depth,
|
|
depthwise=depthwise,
|
|
act=act,
|
|
),
|
|
)
|
|
|
|
# dark3
|
|
self.dark3 = nn.Sequential(
|
|
Conv(base_channels * 2, base_channels * 4, 3, 2, act=act),
|
|
CSPLayer(
|
|
base_channels * 4,
|
|
base_channels * 4,
|
|
n=base_depth * 3,
|
|
depthwise=depthwise,
|
|
act=act,
|
|
),
|
|
)
|
|
|
|
# dark4
|
|
self.dark4 = nn.Sequential(
|
|
Conv(base_channels * 4, base_channels * 8, 3, 2, act=act),
|
|
CSPLayer(
|
|
base_channels * 8,
|
|
base_channels * 8,
|
|
n=base_depth * 3,
|
|
depthwise=depthwise,
|
|
act=act,
|
|
),
|
|
)
|
|
|
|
# dark5
|
|
if spp_type == 'spp':
|
|
self.dark5 = nn.Sequential(
|
|
Conv(base_channels * 8, base_channels * 16, 3, 2, act=act),
|
|
SPPBottleneck(
|
|
base_channels * 16, base_channels * 16, activation=act),
|
|
CSPLayer(
|
|
base_channels * 16,
|
|
base_channels * 16,
|
|
n=base_depth,
|
|
shortcut=False,
|
|
depthwise=depthwise,
|
|
act=act,
|
|
),
|
|
)
|
|
|
|
elif spp_type == 'sppf':
|
|
self.dark5 = nn.Sequential(
|
|
Conv(base_channels * 8, base_channels * 16, 3, 2, act=act),
|
|
SPPFBottleneck(
|
|
base_channels * 16, base_channels * 16, activation=act),
|
|
CSPLayer(
|
|
base_channels * 16,
|
|
base_channels * 16,
|
|
n=base_depth,
|
|
shortcut=False,
|
|
depthwise=depthwise,
|
|
act=act,
|
|
),
|
|
)
|
|
|
|
def forward(self, x):
|
|
outputs = {}
|
|
x = self.stem(x)
|
|
outputs['stem'] = x
|
|
x = self.dark2(x)
|
|
outputs['dark2'] = x
|
|
x = self.dark3(x)
|
|
outputs['dark3'] = x
|
|
x = self.dark4(x)
|
|
outputs['dark4'] = x
|
|
x = self.dark5(x)
|
|
outputs['dark5'] = x
|
|
return {k: v for k, v in outputs.items() if k in self.out_features}
|