Cathy0908 54e9571423
add BEVFormer (#203)
* add BEVFormer and benchmark
2022-10-24 17:20:12 +08:00

340 lines
12 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) Alibaba, Inc. and its affiliates.
import mmcv
import numpy as np
from numpy import random
from easycv.core.bbox import (CameraInstance3DBoxes, DepthInstance3DBoxes,
LiDARInstance3DBoxes)
from easycv.datasets.registry import PIPELINES
@PIPELINES.register_module()
class PhotoMetricDistortionMultiViewImage:
"""Apply photometric distortion to image sequentially, every transformation
is applied with a probability of 0.5. The position of random contrast is in
second or second to last.
1. random brightness
2. random contrast (mode 0)
3. convert color from BGR to HSV
4. random saturation
5. random hue
6. convert color from HSV to BGR
7. random contrast (mode 1)
8. randomly swap channels
Args:
brightness_delta (int): delta of brightness.
contrast_range (tuple): range of contrast.
saturation_range (tuple): range of saturation.
hue_delta (int): delta of hue.
"""
def __init__(self,
brightness_delta=32,
contrast_range=(0.5, 1.5),
saturation_range=(0.5, 1.5),
hue_delta=18):
self.brightness_delta = brightness_delta
self.contrast_lower, self.contrast_upper = contrast_range
self.saturation_lower, self.saturation_upper = saturation_range
self.hue_delta = hue_delta
def __call__(self, results):
"""Call function to perform photometric distortion on images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Result dict with images distorted.
"""
imgs = results['img']
new_imgs = []
for img in imgs:
assert img.dtype == np.float32, \
'PhotoMetricDistortion needs the input image of dtype np.float32,'\
' please set "to_float32=True" in "LoadImageFromFile" pipeline'
# random brightness
if random.randint(2):
delta = random.uniform(-self.brightness_delta,
self.brightness_delta)
img += delta
# mode == 0 --> do random contrast first
# mode == 1 --> do random contrast last
mode = random.randint(2)
if mode == 1:
if random.randint(2):
alpha = random.uniform(self.contrast_lower,
self.contrast_upper)
img *= alpha
# convert color from BGR to HSV
img = mmcv.bgr2hsv(img)
# random saturation
if random.randint(2):
img[..., 1] *= random.uniform(self.saturation_lower,
self.saturation_upper)
# random hue
if random.randint(2):
img[..., 0] += random.uniform(-self.hue_delta, self.hue_delta)
img[..., 0][img[..., 0] > 360] -= 360
img[..., 0][img[..., 0] < 0] += 360
# convert color from HSV to BGR
img = mmcv.hsv2bgr(img)
# random contrast
if mode == 0:
if random.randint(2):
alpha = random.uniform(self.contrast_lower,
self.contrast_upper)
img *= alpha
# randomly swap channels
if random.randint(2):
img = img[..., random.permutation(3)]
new_imgs.append(img)
results['img'] = new_imgs
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(\nbrightness_delta={self.brightness_delta},\n'
repr_str += 'contrast_range='
repr_str += f'{(self.contrast_lower, self.contrast_upper)},\n'
repr_str += 'saturation_range='
repr_str += f'{(self.saturation_lower, self.saturation_upper)},\n'
repr_str += f'hue_delta={self.hue_delta})'
return repr_str
@PIPELINES.register_module()
class ObjectRangeFilter(object):
"""Filter objects by the range.
Args:
point_cloud_range (list[float]): Point cloud range.
"""
def __init__(self, point_cloud_range):
self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
def __call__(self, input_dict):
"""Call function to filter objects by the range.
Args:
input_dict (dict): Result dict from loading pipeline.
Returns:
dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
keys are updated in the result dict.
"""
# Check points instance type and initialise bev_range
if isinstance(input_dict['gt_bboxes_3d'],
(LiDARInstance3DBoxes, DepthInstance3DBoxes)):
bev_range = self.pcd_range[[0, 1, 3, 4]]
elif isinstance(input_dict['gt_bboxes_3d'], CameraInstance3DBoxes):
bev_range = self.pcd_range[[0, 2, 3, 5]]
gt_bboxes_3d = input_dict['gt_bboxes_3d']
gt_labels_3d = input_dict['gt_labels_3d']
mask = gt_bboxes_3d.in_range_bev(bev_range)
gt_bboxes_3d = gt_bboxes_3d[mask]
# mask is a torch tensor but gt_labels_3d is still numpy array
# using mask to index gt_labels_3d will cause bug when
# len(gt_labels_3d) == 1, where mask=1 will be interpreted
# as gt_labels_3d[1] and cause out of index error
gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
# limit rad to [-pi, pi]
gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
input_dict['gt_bboxes_3d'] = gt_bboxes_3d
input_dict['gt_labels_3d'] = gt_labels_3d
return input_dict
def __repr__(self):
"""str: Return a string that describes the module."""
repr_str = self.__class__.__name__
repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
return repr_str
@PIPELINES.register_module()
class ObjectNameFilter(object):
"""Filter GT objects by their names.
Args:
classes (list[str]): List of class names to be kept for training.
"""
def __init__(self, classes):
self.classes = classes
self.labels = list(range(len(self.classes)))
def __call__(self, input_dict):
"""Call function to filter objects by their names.
Args:
input_dict (dict): Result dict from loading pipeline.
Returns:
dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
keys are updated in the result dict.
"""
gt_labels_3d = input_dict['gt_labels_3d']
gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
dtype=np.bool_)
input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]
return input_dict
def __repr__(self):
"""str: Return a string that describes the module."""
repr_str = self.__class__.__name__
repr_str += f'(classes={self.classes})'
return repr_str
@PIPELINES.register_module()
class NormalizeMultiviewImage(object):
"""Normalize the image.
Added key is "img_norm_cfg".
Args:
mean (sequence): Mean values of 3 channels.
std (sequence): Std values of 3 channels.
to_rgb (bool): Whether to convert the image from BGR to RGB,
default is true.
"""
def __init__(self, mean, std, to_rgb=True):
self.mean = np.array(mean, dtype=np.float32)
self.std = np.array(std, dtype=np.float32)
self.to_rgb = to_rgb
def __call__(self, results):
"""Call function to normalize images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Normalized results, 'img_norm_cfg' key is added into
result dict.
"""
results['img'] = [
mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
for img in results['img']
]
results['img_norm_cfg'] = dict(
mean=self.mean, std=self.std, to_rgb=self.to_rgb)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(mean={self.mean}, std={self.std}, to_rgb={self.to_rgb})'
return repr_str
@PIPELINES.register_module()
class PadMultiViewImage(object):
"""Pad the multi-view image.
There are two padding modes: (1) pad to a fixed size and (2) pad to the
minimum size that is divisible by some number.
Added keys are "pad_shape", "pad_fixed_size", "pad_size_divisor",
Args:
size (tuple, optional): Fixed padding size.
size_divisor (int, optional): The divisor of padded size.
pad_val (float, optional): Padding value, 0 by default.
"""
def __init__(self, size=None, size_divisor=None, pad_val=0):
self.size = size
self.size_divisor = size_divisor
self.pad_val = pad_val
# only one of size and size_divisor should be valid
assert size is not None or size_divisor is not None
assert size is None or size_divisor is None
def _pad_img(self, results):
"""Pad images according to ``self.size``."""
if self.size is not None:
padded_img = [
mmcv.impad(img, shape=self.size, pad_val=self.pad_val)
for img in results['img']
]
elif self.size_divisor is not None:
padded_img = [
mmcv.impad_to_multiple(
img, self.size_divisor, pad_val=self.pad_val)
for img in results['img']
]
results['ori_shape'] = [img.shape for img in results['img']]
results['img'] = padded_img
results['img_shape'] = [img.shape for img in padded_img]
results['pad_shape'] = [img.shape for img in padded_img]
results['pad_fixed_size'] = self.size
results['pad_size_divisor'] = self.size_divisor
def __call__(self, results):
"""Call function to pad images, masks, semantic segmentation maps.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Updated result dict.
"""
self._pad_img(results)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(size={self.size}, '
repr_str += f'size_divisor={self.size_divisor}, '
repr_str += f'pad_val={self.pad_val})'
return repr_str
@PIPELINES.register_module()
class RandomScaleImageMultiViewImage(object):
"""Random scale the image.
Args:
scales (List[float]): List of scales.
"""
def __init__(self, scales=[]):
self.scales = scales
assert len(self.scales) == 1
def __call__(self, results):
"""Call function to pad images, masks, semantic segmentation maps.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Updated result dict.
"""
rand_ind = np.random.permutation(range(len(self.scales)))[0]
rand_scale = self.scales[rand_ind]
y_size = [int(img.shape[0] * rand_scale) for img in results['img']]
x_size = [int(img.shape[1] * rand_scale) for img in results['img']]
scale_factor = np.eye(4)
scale_factor[0, 0] *= rand_scale
scale_factor[1, 1] *= rand_scale
results['img'] = [
mmcv.imresize(img, (x_size[idx], y_size[idx]), return_scale=False)
for idx, img in enumerate(results['img'])
]
lidar2img = [scale_factor @ l2i for l2i in results['lidar2img']]
results['lidar2img'] = lidar2img
results['img_shape'] = [img.shape for img in results['img']]
results['ori_shape'] = [img.shape for img in results['img']]
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(size={self.scales}, '
return repr_str