mirror of https://github.com/alibaba/EasyCV.git
190 lines
7.3 KiB
Python
190 lines
7.3 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from easycv.models.builder import HEADS, build_neck
|
|
from easycv.models.detection.utils import (HungarianMatcher, SetCriterion,
|
|
box_cxcywh_to_xyxy,
|
|
box_xyxy_to_cxcywh)
|
|
from easycv.models.utils import MLP
|
|
|
|
|
|
@HEADS.register_module()
|
|
class DETRHead(nn.Module):
|
|
"""Implements the DETR transformer head.
|
|
See `paper: End-to-End Object Detection with Transformers
|
|
<https://arxiv.org/pdf/2005.12872>`_ for details.
|
|
Args:
|
|
num_classes (int): Number of categories excluding the background.
|
|
"""
|
|
|
|
_version = 2
|
|
|
|
def __init__(self,
|
|
num_classes,
|
|
embed_dims,
|
|
eos_coef=0.1,
|
|
transformer=None,
|
|
cost_dict={
|
|
'cost_class': 1,
|
|
'cost_bbox': 5,
|
|
'cost_giou': 2,
|
|
},
|
|
weight_dict={
|
|
'loss_ce': 1,
|
|
'loss_bbox': 5,
|
|
'loss_giou': 2
|
|
},
|
|
**kwargs):
|
|
|
|
super(DETRHead, self).__init__()
|
|
|
|
self.matcher = HungarianMatcher(cost_dict=cost_dict)
|
|
self.criterion = SetCriterion(
|
|
num_classes,
|
|
matcher=self.matcher,
|
|
weight_dict=weight_dict,
|
|
eos_coef=eos_coef,
|
|
losses=['labels', 'boxes'])
|
|
self.postprocess = PostProcess()
|
|
self.transformer = build_neck(transformer)
|
|
|
|
self.class_embed = nn.Linear(embed_dims, num_classes + 1)
|
|
self.bbox_embed = MLP(embed_dims, embed_dims, 4, 3)
|
|
self.num_classes = num_classes
|
|
|
|
def init_weights(self):
|
|
"""Initialize weights of the detr head."""
|
|
self.transformer.init_weights()
|
|
|
|
def forward(self, feats, img_metas):
|
|
"""Forward function.
|
|
Args:
|
|
feats (tuple[Tensor]): Features from the upstream network, each is
|
|
a 4D-tensor.
|
|
img_metas (list[dict]): List of image information.
|
|
Returns:
|
|
tuple[list[Tensor], list[Tensor]]: Outputs for all scale levels.
|
|
- all_cls_scores_list (list[Tensor]): Classification scores \
|
|
for each scale level. Each is a 4D-tensor with shape \
|
|
[nb_dec, bs, num_query, cls_out_channels]. Note \
|
|
`cls_out_channels` should includes background.
|
|
- all_bbox_preds_list (list[Tensor]): Sigmoid regression \
|
|
outputs for each scale level. Each is a 4D-tensor with \
|
|
normalized coordinate format (cx, cy, w, h) and shape \
|
|
[nb_dec, bs, num_query, 4].
|
|
"""
|
|
feats = self.transformer(feats, img_metas)
|
|
|
|
outputs_class = self.class_embed(feats)
|
|
outputs_coord = self.bbox_embed(feats).sigmoid()
|
|
|
|
out = {
|
|
'pred_logits': outputs_class[-1],
|
|
'pred_boxes': outputs_coord[-1]
|
|
}
|
|
|
|
out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord)
|
|
return out
|
|
|
|
@torch.jit.unused
|
|
def _set_aux_loss(self, outputs_class, outputs_coord):
|
|
# this is a workaround to make torchscript happy, as torchscript
|
|
# doesn't support dictionary with non-homogeneous values, such
|
|
# as a dict having both a Tensor and a list.
|
|
return [{
|
|
'pred_logits': a,
|
|
'pred_boxes': b
|
|
} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
|
|
|
|
# over-write because img_metas are needed as inputs for bbox_head.
|
|
def forward_train(self, x, img_metas, gt_bboxes, gt_labels):
|
|
"""Forward function for training mode.
|
|
Args:
|
|
x (list[Tensor]): Features from backbone.
|
|
img_metas (list[dict]): Meta information of each image, e.g.,
|
|
image size, scaling factor, etc.
|
|
gt_bboxes (Tensor): Ground truth bboxes of the image,
|
|
shape (num_gts, 4).
|
|
gt_labels (Tensor): Ground truth labels of each box,
|
|
shape (num_gts,).
|
|
gt_bboxes_ignore (Tensor): Ground truth bboxes to be
|
|
ignored, shape (num_ignored_gts, 4).
|
|
proposal_cfg (mmcv.Config): Test / postprocessing configuration,
|
|
if None, test_cfg would be used.
|
|
Returns:
|
|
dict[str, Tensor]: A dictionary of loss components.
|
|
"""
|
|
# prepare ground truth
|
|
for i in range(len(img_metas)):
|
|
img_h, img_w, _ = img_metas[i]['img_shape']
|
|
# DETR regress the relative position of boxes (cxcywh) in the image.
|
|
# Thus the learning target should be normalized by the image size, also
|
|
# the box format should be converted from defaultly x1y1x2y2 to cxcywh.
|
|
factor = gt_bboxes[i].new_tensor([img_w, img_h, img_w,
|
|
img_h]).unsqueeze(0)
|
|
gt_bboxes[i] = box_xyxy_to_cxcywh(gt_bboxes[i]) / factor
|
|
|
|
targets = []
|
|
for gt_label, gt_bbox in zip(gt_labels, gt_bboxes):
|
|
targets.append({'labels': gt_label, 'boxes': gt_bbox})
|
|
|
|
outputs = self.forward(x, img_metas)
|
|
|
|
losses = self.criterion(outputs, targets)
|
|
|
|
return losses
|
|
|
|
def forward_test(self, x, img_metas):
|
|
outputs = self.forward(x, img_metas)
|
|
|
|
ori_shape_list = []
|
|
for i in range(len(img_metas)):
|
|
ori_h, ori_w, _ = img_metas[i]['ori_shape']
|
|
ori_shape_list.append(torch.as_tensor([ori_h, ori_w]))
|
|
orig_target_sizes = torch.stack(ori_shape_list, dim=0)
|
|
|
|
results = self.postprocess(outputs, orig_target_sizes, img_metas)
|
|
return results
|
|
|
|
|
|
class PostProcess(nn.Module):
|
|
""" This module converts the model's output into the format expected by the coco api"""
|
|
|
|
@torch.no_grad()
|
|
def forward(self, outputs, target_sizes, img_metas):
|
|
""" Perform the computation
|
|
Parameters:
|
|
outputs: raw outputs of the model
|
|
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
|
|
For evaluation, this must be the original image size (before any data augmentation)
|
|
For visualization, this should be the image size after data augment, but before padding
|
|
"""
|
|
out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes']
|
|
|
|
assert len(out_logits) == len(target_sizes)
|
|
assert target_sizes.shape[1] == 2
|
|
|
|
prob = F.softmax(out_logits, -1)
|
|
scores, labels = prob[..., :-1].max(-1)
|
|
|
|
# convert to [x0, y0, x1, y1] format
|
|
boxes = box_cxcywh_to_xyxy(out_bbox)
|
|
# and from relative [0, 1] to absolute [0, height] coordinates
|
|
img_h, img_w = target_sizes.unbind(1)
|
|
scale_fct = torch.stack([img_w, img_h, img_w, img_h],
|
|
dim=1).to(boxes.device)
|
|
boxes = boxes * scale_fct[:, None, :]
|
|
|
|
results = {
|
|
'detection_boxes': [boxes[0].cpu().numpy()],
|
|
'detection_scores': [scores[0].cpu().numpy()],
|
|
'detection_classes': [labels[0].cpu().numpy().astype(np.int32)],
|
|
'img_metas': img_metas
|
|
}
|
|
|
|
return results
|