mirror of https://github.com/alibaba/EasyCV.git
199 lines
7.4 KiB
Python
199 lines
7.4 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# Modified from https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.6/ppocr/postprocess/rec_postprocess.py
|
|
import os.path as osp
|
|
import re
|
|
import string
|
|
|
|
import numpy as np
|
|
import requests
|
|
import torch
|
|
|
|
|
|
class BaseRecLabelDecode(object):
|
|
""" Convert between text-label and text-index """
|
|
|
|
def __init__(self, character_dict_path=None, use_space_char=False):
|
|
self.beg_str = 'sos'
|
|
self.end_str = 'eos'
|
|
|
|
self.character_str = []
|
|
if character_dict_path is None:
|
|
self.character_str = '0123456789abcdefghijklmnopqrstuvwxyz'
|
|
dict_character = list(self.character_str)
|
|
else:
|
|
if character_dict_path.startswith('http'):
|
|
r = requests.get(character_dict_path)
|
|
tpath = character_dict_path.split('/')[-1]
|
|
while not osp.exists(tpath):
|
|
try:
|
|
with open(tpath, 'wb') as code:
|
|
code.write(r.content)
|
|
except:
|
|
pass
|
|
character_dict_path = tpath
|
|
with open(character_dict_path, 'rb') as fin:
|
|
lines = fin.readlines()
|
|
for line in lines:
|
|
line = line.decode('utf-8').strip('\n').strip('\r\n')
|
|
self.character_str.append(line)
|
|
if use_space_char:
|
|
self.character_str.append(' ')
|
|
dict_character = list(self.character_str)
|
|
|
|
dict_character = self.add_special_char(dict_character)
|
|
self.dict = {}
|
|
for i, char in enumerate(dict_character):
|
|
self.dict[char] = i
|
|
self.character = dict_character
|
|
|
|
def add_special_char(self, dict_character):
|
|
return dict_character
|
|
|
|
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
|
|
""" convert text-index into text-label. """
|
|
result_list = []
|
|
ignored_tokens = self.get_ignored_tokens()
|
|
batch_size = len(text_index)
|
|
for batch_idx in range(batch_size):
|
|
selection = np.ones(len(text_index[batch_idx]), dtype=bool)
|
|
if is_remove_duplicate:
|
|
selection[1:] = text_index[batch_idx][1:] != text_index[
|
|
batch_idx][:-1]
|
|
for ignored_token in ignored_tokens:
|
|
selection &= text_index[batch_idx] != ignored_token
|
|
char_list = [
|
|
self.character[text_id]
|
|
for text_id in text_index[batch_idx][selection]
|
|
]
|
|
if text_prob is not None:
|
|
conf_list = text_prob[batch_idx][selection]
|
|
else:
|
|
conf_list = [1] * len(selection)
|
|
if len(conf_list) == 0:
|
|
conf_list = [0]
|
|
|
|
text = ''.join(char_list)
|
|
result_list.append((text, np.mean(conf_list).tolist()))
|
|
return result_list
|
|
|
|
def get_ignored_tokens(self):
|
|
return [0] # for ctc blank
|
|
|
|
|
|
class CTCLabelDecode(BaseRecLabelDecode):
|
|
""" Convert between text-label and text-index """
|
|
|
|
def __init__(self,
|
|
character_dict_path=None,
|
|
use_space_char=False,
|
|
**kwargs):
|
|
super(CTCLabelDecode, self).__init__(character_dict_path,
|
|
use_space_char)
|
|
|
|
def __call__(self, preds, label=None, *args, **kwargs):
|
|
if isinstance(preds, tuple) or isinstance(preds, list):
|
|
preds = preds[-1]
|
|
if isinstance(preds, torch.Tensor):
|
|
preds = preds.numpy()
|
|
preds_idx = preds.argmax(axis=2)
|
|
preds_prob = preds.max(axis=2)
|
|
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
|
|
if label is None:
|
|
return text
|
|
label = self.decode(label)
|
|
return text, label
|
|
|
|
def add_special_char(self, dict_character):
|
|
dict_character = ['blank'] + dict_character
|
|
return dict_character
|
|
|
|
|
|
class SARLabelDecode(BaseRecLabelDecode):
|
|
""" Convert between text-label and text-index """
|
|
|
|
def __init__(self,
|
|
character_dict_path=None,
|
|
use_space_char=False,
|
|
**kwargs):
|
|
super(SARLabelDecode, self).__init__(character_dict_path,
|
|
use_space_char)
|
|
|
|
self.rm_symbol = kwargs.get('rm_symbol', False)
|
|
|
|
def add_special_char(self, dict_character):
|
|
beg_end_str = '<BOS/EOS>'
|
|
unknown_str = '<UKN>'
|
|
padding_str = '<PAD>'
|
|
dict_character = dict_character + [unknown_str]
|
|
self.unknown_idx = len(dict_character) - 1
|
|
dict_character = dict_character + [beg_end_str]
|
|
self.start_idx = len(dict_character) - 1
|
|
self.end_idx = len(dict_character) - 1
|
|
dict_character = dict_character + [padding_str]
|
|
self.padding_idx = len(dict_character) - 1
|
|
return dict_character
|
|
|
|
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
|
|
""" convert text-index into text-label. """
|
|
result_list = []
|
|
ignored_tokens = self.get_ignored_tokens()
|
|
|
|
batch_size = len(text_index)
|
|
for batch_idx in range(batch_size):
|
|
char_list = []
|
|
conf_list = []
|
|
for idx in range(len(text_index[batch_idx])):
|
|
if text_index[batch_idx][idx] in ignored_tokens:
|
|
continue
|
|
if int(text_index[batch_idx][idx]) == int(self.end_idx):
|
|
if text_prob is None and idx == 0:
|
|
continue
|
|
else:
|
|
break
|
|
if is_remove_duplicate:
|
|
# only for predict
|
|
if idx > 0 and text_index[batch_idx][
|
|
idx - 1] == text_index[batch_idx][idx]:
|
|
continue
|
|
char_list.append(self.character[int(
|
|
text_index[batch_idx][idx])])
|
|
if text_prob is not None:
|
|
conf_list.append(text_prob[batch_idx][idx])
|
|
else:
|
|
conf_list.append(1)
|
|
text = ''.join(char_list)
|
|
if self.rm_symbol:
|
|
comp = re.compile('[^A-Z^a-z^0-9^\u4e00-\u9fa5]')
|
|
text = text.lower()
|
|
text = comp.sub('', text)
|
|
result_list.append((text, np.mean(conf_list).tolist()))
|
|
return result_list
|
|
|
|
def __call__(self, preds, label=None, *args, **kwargs):
|
|
if isinstance(preds, torch.Tensor):
|
|
preds = preds.cpu().numpy()
|
|
preds_idx = preds.argmax(axis=2)
|
|
preds_prob = preds.max(axis=2)
|
|
|
|
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
|
|
|
|
if label is None:
|
|
return text
|
|
label = self.decode(label, is_remove_duplicate=False)
|
|
return text, label
|
|
|
|
def get_ignored_tokens(self):
|
|
return [self.padding_idx]
|