mirror of https://github.com/alibaba/EasyCV.git
154 lines
5.4 KiB
Python
154 lines
5.4 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
"""
|
|
isort:skip_file
|
|
"""
|
|
import json
|
|
import os
|
|
import subprocess
|
|
import unittest
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
|
|
from easycv.models import build_model
|
|
from easycv.predictors.feature_extractor import (TorchFaceFeatureExtractor,
|
|
TorchFeatureExtractor,
|
|
TorchMultiFaceFeatureExtractor
|
|
)
|
|
from easycv.utils.checkpoint import load_checkpoint
|
|
from easycv.utils.config_tools import mmcv_config_fromfile
|
|
from easycv.utils.test_util import clean_up, get_tmp_dir
|
|
from tests.ut_config import (PRETRAINED_MODEL_RESNET50, TEST_IMAGES_DIR,
|
|
PRETRAINED_MODEL_MOCO, PRETRAINED_MODEL_FACEID)
|
|
|
|
|
|
class TorchMultiFaceFeatureExtractorTest(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
self.tmp_dir = get_tmp_dir()
|
|
print('tmp dir %s' % self.tmp_dir)
|
|
|
|
def test_torch_multi_face_feature_extractor(self):
|
|
model_path = PRETRAINED_MODEL_FACEID
|
|
test_img = os.path.join(TEST_IMAGES_DIR, 'multi_face.jpg')
|
|
face_extract = TorchMultiFaceFeatureExtractor(model_path)
|
|
img = Image.open(test_img)
|
|
result = face_extract.predict([img])[0]
|
|
self.assertTrue('feature' in result)
|
|
self.assertTrue('bbox' in result)
|
|
self.assertTrue(len(result['feature']) == 3)
|
|
self.assertTrue(len(result['bbox']) == 3)
|
|
self.assertTrue(result['feature'][0].reshape([1, -1]).shape[1] == 512)
|
|
self.assertTrue(len(result['bbox'][0]) == 5)
|
|
|
|
|
|
class TorchFaceFeatureExtractorTest(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
self.tmp_dir = get_tmp_dir()
|
|
print('tmp dir %s' % self.tmp_dir)
|
|
|
|
def test_torch_face_feature_extractor(self):
|
|
model_path = PRETRAINED_MODEL_FACEID
|
|
test_img = os.path.join(TEST_IMAGES_DIR, 'multi_face.jpg')
|
|
face_extract = TorchFaceFeatureExtractor(model_path)
|
|
img = Image.open(test_img)
|
|
result = face_extract.predict([img])[0]
|
|
self.assertTrue('feature' in result)
|
|
self.assertTrue(result['feature'].reshape([1, -1]).shape[1] == 512)
|
|
|
|
|
|
class TorchFeatureExtractorTest(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
self.tmp_dir = get_tmp_dir()
|
|
print('tmp dir %s' % self.tmp_dir)
|
|
|
|
def test_torch_feature_extractor(self):
|
|
model_config = dict(
|
|
type='Classification',
|
|
backbone=dict(
|
|
type='ResNet',
|
|
depth=50,
|
|
out_indices=[4], # 0: conv-1, x: stage-x
|
|
norm_cfg=dict(type='BN'),
|
|
),
|
|
head=dict(
|
|
type='ClsHead',
|
|
with_avg_pool=True,
|
|
in_channels=2048,
|
|
num_classes=1000,
|
|
))
|
|
|
|
img_norm_cfg = dict(
|
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
test_pipeline = [
|
|
dict(type='Resize', size=[224, 224]),
|
|
dict(type='ToTensor'),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
dict(type='Collect', keys=['img'])
|
|
]
|
|
|
|
CONFIG = dict(
|
|
model=model_config,
|
|
test_pipeline=test_pipeline,
|
|
)
|
|
|
|
meta = dict(config=json.dumps(CONFIG))
|
|
checkpoint = PRETRAINED_MODEL_RESNET50
|
|
state_dict = torch.load(checkpoint)['state_dict']
|
|
output_dict = dict(state_dict=state_dict, author='EasyCV', meta=meta)
|
|
output_ckpt = f'{self.tmp_dir}/feature_extract.pth'
|
|
torch.save(output_dict, output_ckpt)
|
|
|
|
fe = TorchFeatureExtractor(output_ckpt)
|
|
|
|
img = cv2.imread(os.path.join(TEST_IMAGES_DIR, 'indoor.jpg'))
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
|
|
feature = fe.predict([img])
|
|
self.assertEqual(feature[0]['feature'].shape, (2048, ))
|
|
clean_up(self.tmp_dir)
|
|
|
|
def test_torch_feature_extractor2(self):
|
|
config_file = 'configs/selfsup/mocov2/mocov2_rn50_8xb32_200e_tfrecord.py'
|
|
ori_ckpt = PRETRAINED_MODEL_MOCO
|
|
ckpt_path = f'{self.tmp_dir}/moco_export.pth'
|
|
stat, output = subprocess.getstatusoutput(
|
|
f'python tools/export.py {config_file} {ori_ckpt} {ckpt_path}')
|
|
self.assertTrue(stat == 0, 'export model failed')
|
|
if stat != 0:
|
|
print(output)
|
|
fe = TorchFeatureExtractor(ckpt_path)
|
|
|
|
img = cv2.imread(os.path.join(TEST_IMAGES_DIR, 'indoor.jpg'))
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
|
|
feature = fe.predict([img])
|
|
self.assertEqual(feature[0]['feature'].shape, (2048, ))
|
|
|
|
# check numerical equavalence
|
|
cfg = mmcv_config_fromfile(config_file)
|
|
model = build_model(cfg.model)
|
|
load_checkpoint(model, ori_ckpt)
|
|
model.eval()
|
|
avg_pool = torch.nn.AdaptiveAvgPool2d((1, 1))
|
|
ans = feature[0]['feature']
|
|
with torch.no_grad():
|
|
batch_image = torch.stack(fe.predictor.preprocess([img]))
|
|
out = model(batch_image, mode='extract')['neck']
|
|
f = avg_pool(out)
|
|
f = torch.squeeze(f).data.cpu().numpy()
|
|
self.assertTrue(np.allclose(ans, f, atol=1e-4))
|
|
|
|
clean_up(self.tmp_dir)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|