mirror of https://github.com/alibaba/EasyCV.git
709 lines
26 KiB
Python
709 lines
26 KiB
Python
# ------------------------------------------------------------------------
|
|
# DINO
|
|
# Copyright (c) 2022 IDEA. All Rights Reserved.
|
|
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
# --------------------------------------------------------
|
|
# modified from https://github.com/SwinTransformer/Swin-Transformer-Object-Detection/blob/master/mmdet/models/backbones/swin_transformer.py
|
|
# --------------------------------------------------------
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint as checkpoint
|
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
|
|
|
from easycv.models.utils import Mlp
|
|
from ..registry import BACKBONES
|
|
|
|
|
|
def window_partition(x, window_size):
|
|
"""
|
|
Args:
|
|
x: (B, H, W, C)
|
|
window_size (int): window size
|
|
Returns:
|
|
windows: (num_windows*B, window_size, window_size, C)
|
|
"""
|
|
B, H, W, C = x.shape
|
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size,
|
|
C)
|
|
windows = x.permute(0, 1, 3, 2, 4,
|
|
5).contiguous().view(-1, window_size, window_size, C)
|
|
return windows
|
|
|
|
|
|
def window_reverse(windows, window_size, H, W):
|
|
"""
|
|
Args:
|
|
windows: (num_windows*B, window_size, window_size, C)
|
|
window_size (int): Window size
|
|
H (int): Height of image
|
|
W (int): Width of image
|
|
Returns:
|
|
x: (B, H, W, C)
|
|
"""
|
|
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
|
x = windows.view(B, H // window_size, W // window_size, window_size,
|
|
window_size, -1)
|
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
|
return x
|
|
|
|
|
|
class WindowAttention(nn.Module):
|
|
""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
|
It supports both of shifted and non-shifted window.
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
window_size (tuple[int]): The height and width of the window.
|
|
num_heads (int): Number of attention heads.
|
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
|
"""
|
|
|
|
def __init__(self,
|
|
dim,
|
|
window_size,
|
|
num_heads,
|
|
qkv_bias=True,
|
|
qk_scale=None,
|
|
attn_drop=0.,
|
|
proj_drop=0.):
|
|
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.window_size = window_size # Wh, Ww
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = qk_scale or head_dim**-0.5
|
|
|
|
# define a parameter table of relative position bias
|
|
self.relative_position_bias_table = nn.Parameter(
|
|
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1),
|
|
num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
|
|
|
# get pair-wise relative position index for each token inside the window
|
|
coords_h = torch.arange(self.window_size[0])
|
|
coords_w = torch.arange(self.window_size[1])
|
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
|
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
|
relative_coords = coords_flatten[:, :,
|
|
None] - coords_flatten[:,
|
|
None, :] # 2, Wh*Ww, Wh*Ww
|
|
relative_coords = relative_coords.permute(
|
|
1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
|
relative_coords[:, :,
|
|
0] += self.window_size[0] - 1 # shift to start from 0
|
|
relative_coords[:, :, 1] += self.window_size[1] - 1
|
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
|
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
|
self.register_buffer('relative_position_index',
|
|
relative_position_index)
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
trunc_normal_(self.relative_position_bias_table, std=.02)
|
|
self.softmax = nn.Softmax(dim=-1)
|
|
|
|
def forward(self, x, mask=None):
|
|
""" Forward function.
|
|
Args:
|
|
x: input features with shape of (num_windows*B, N, C)
|
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
|
"""
|
|
B_, N, C = x.shape
|
|
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads,
|
|
C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
q, k, v = qkv[0], qkv[1], qkv[
|
|
2] # make torchscript happy (cannot use tensor as tuple)
|
|
|
|
q = q * self.scale
|
|
attn = (q @ k.transpose(-2, -1))
|
|
|
|
relative_position_bias = self.relative_position_bias_table[
|
|
self.relative_position_index.view(-1)].view(
|
|
self.window_size[0] * self.window_size[1],
|
|
self.window_size[0] * self.window_size[1],
|
|
-1) # Wh*Ww,Wh*Ww,nH
|
|
relative_position_bias = relative_position_bias.permute(
|
|
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
|
attn = attn + relative_position_bias.unsqueeze(0)
|
|
|
|
if mask is not None:
|
|
nW = mask.shape[0]
|
|
attn = attn.view(B_ // nW, nW, self.num_heads, N,
|
|
N) + mask.unsqueeze(1).unsqueeze(0)
|
|
attn = attn.view(-1, self.num_heads, N, N)
|
|
attn = self.softmax(attn)
|
|
else:
|
|
attn = self.softmax(attn)
|
|
|
|
attn = self.attn_drop(attn)
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|
|
|
|
class SwinTransformerBlock(nn.Module):
|
|
""" Swin Transformer Block.
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
num_heads (int): Number of attention heads.
|
|
window_size (int): Window size.
|
|
shift_size (int): Shift size for SW-MSA.
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
|
drop (float, optional): Dropout rate. Default: 0.0
|
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
|
"""
|
|
|
|
def __init__(self,
|
|
dim,
|
|
num_heads,
|
|
window_size=7,
|
|
shift_size=0,
|
|
mlp_ratio=4.,
|
|
qkv_bias=True,
|
|
qk_scale=None,
|
|
drop=0.,
|
|
attn_drop=0.,
|
|
drop_path=0.,
|
|
act_layer=nn.GELU,
|
|
norm_layer=nn.LayerNorm):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.num_heads = num_heads
|
|
self.window_size = window_size
|
|
self.shift_size = shift_size
|
|
self.mlp_ratio = mlp_ratio
|
|
assert 0 <= self.shift_size < self.window_size, 'shift_size must in 0-window_size'
|
|
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = WindowAttention(
|
|
dim,
|
|
window_size=to_2tuple(self.window_size),
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
attn_drop=attn_drop,
|
|
proj_drop=drop)
|
|
|
|
self.drop_path = DropPath(
|
|
drop_path) if drop_path > 0. else nn.Identity()
|
|
self.norm2 = norm_layer(dim)
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = Mlp(
|
|
in_features=dim,
|
|
hidden_features=mlp_hidden_dim,
|
|
act_layer=act_layer,
|
|
drop=drop)
|
|
|
|
self.H = None
|
|
self.W = None
|
|
|
|
def forward(self, x, mask_matrix):
|
|
""" Forward function.
|
|
Args:
|
|
x: Input feature, tensor size (B, H*W, C).
|
|
H, W: Spatial resolution of the input feature.
|
|
mask_matrix: Attention mask for cyclic shift.
|
|
"""
|
|
B, L, C = x.shape
|
|
H, W = self.H, self.W
|
|
assert L == H * W, 'input feature has wrong size'
|
|
|
|
shortcut = x
|
|
x = self.norm1(x)
|
|
x = x.view(B, H, W, C)
|
|
|
|
# pad feature maps to multiples of window size
|
|
pad_l = pad_t = 0
|
|
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
|
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
|
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
|
_, Hp, Wp, _ = x.shape
|
|
|
|
# cyclic shift
|
|
if self.shift_size > 0:
|
|
shifted_x = torch.roll(
|
|
x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
|
attn_mask = mask_matrix
|
|
else:
|
|
shifted_x = x
|
|
attn_mask = None
|
|
|
|
# partition windows
|
|
x_windows = window_partition(
|
|
shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
|
x_windows = x_windows.view(-1, self.window_size * self.window_size,
|
|
C) # nW*B, window_size*window_size, C
|
|
|
|
# W-MSA/SW-MSA
|
|
attn_windows = self.attn(
|
|
x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
|
|
|
# merge windows
|
|
attn_windows = attn_windows.view(-1, self.window_size,
|
|
self.window_size, C)
|
|
shifted_x = window_reverse(attn_windows, self.window_size, Hp,
|
|
Wp) # B H' W' C
|
|
|
|
# reverse cyclic shift
|
|
if self.shift_size > 0:
|
|
x = torch.roll(
|
|
shifted_x,
|
|
shifts=(self.shift_size, self.shift_size),
|
|
dims=(1, 2))
|
|
else:
|
|
x = shifted_x
|
|
|
|
if pad_r > 0 or pad_b > 0:
|
|
x = x[:, :H, :W, :].contiguous()
|
|
|
|
x = x.view(B, H * W, C)
|
|
|
|
# FFN
|
|
x = shortcut + self.drop_path(x)
|
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
|
|
return x
|
|
|
|
|
|
class PatchMerging(nn.Module):
|
|
""" Patch Merging Layer
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
|
"""
|
|
|
|
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
|
self.norm = norm_layer(4 * dim)
|
|
|
|
def forward(self, x, H, W):
|
|
""" Forward function.
|
|
Args:
|
|
x: Input feature, tensor size (B, H*W, C).
|
|
H, W: Spatial resolution of the input feature.
|
|
"""
|
|
B, L, C = x.shape
|
|
assert L == H * W, 'input feature has wrong size'
|
|
|
|
x = x.view(B, H, W, C)
|
|
|
|
# padding
|
|
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
|
if pad_input:
|
|
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
|
|
|
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
|
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
|
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
|
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
|
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
|
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
|
|
|
x = self.norm(x)
|
|
x = self.reduction(x)
|
|
|
|
return x
|
|
|
|
|
|
class BasicLayer(nn.Module):
|
|
""" A basic Swin Transformer layer for one stage.
|
|
Args:
|
|
dim (int): Number of feature channels
|
|
depth (int): Depths of this stage.
|
|
num_heads (int): Number of attention head.
|
|
window_size (int): Local window size. Default: 7.
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
|
drop (float, optional): Dropout rate. Default: 0.0
|
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
|
"""
|
|
|
|
def __init__(self,
|
|
dim,
|
|
depth,
|
|
num_heads,
|
|
window_size=7,
|
|
mlp_ratio=4.,
|
|
qkv_bias=True,
|
|
qk_scale=None,
|
|
drop=0.,
|
|
attn_drop=0.,
|
|
drop_path=0.,
|
|
norm_layer=nn.LayerNorm,
|
|
downsample=None,
|
|
use_checkpoint=False):
|
|
super().__init__()
|
|
self.window_size = window_size
|
|
self.shift_size = window_size // 2
|
|
self.depth = depth
|
|
self.use_checkpoint = use_checkpoint
|
|
|
|
# build blocks
|
|
self.blocks = nn.ModuleList([
|
|
SwinTransformerBlock(
|
|
dim=dim,
|
|
num_heads=num_heads,
|
|
window_size=window_size,
|
|
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
drop=drop,
|
|
attn_drop=attn_drop,
|
|
drop_path=drop_path[i]
|
|
if isinstance(drop_path, list) else drop_path,
|
|
norm_layer=norm_layer) for i in range(depth)
|
|
])
|
|
|
|
# patch merging layer
|
|
if downsample is not None:
|
|
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
|
else:
|
|
self.downsample = None
|
|
|
|
def forward(self, x, H, W):
|
|
""" Forward function.
|
|
Args:
|
|
x: Input feature, tensor size (B, H*W, C).
|
|
H, W: Spatial resolution of the input feature.
|
|
"""
|
|
|
|
# calculate attention mask for SW-MSA
|
|
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
|
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
|
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
|
h_slices = (slice(0, -self.window_size),
|
|
slice(-self.window_size,
|
|
-self.shift_size), slice(-self.shift_size, None))
|
|
w_slices = (slice(0, -self.window_size),
|
|
slice(-self.window_size,
|
|
-self.shift_size), slice(-self.shift_size, None))
|
|
cnt = 0
|
|
for h in h_slices:
|
|
for w in w_slices:
|
|
img_mask[:, h, w, :] = cnt
|
|
cnt += 1
|
|
|
|
mask_windows = window_partition(
|
|
img_mask, self.window_size) # nW, window_size, window_size, 1
|
|
mask_windows = mask_windows.view(-1,
|
|
self.window_size * self.window_size)
|
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
|
attn_mask = attn_mask.masked_fill(attn_mask != 0,
|
|
float(-100.0)).masked_fill(
|
|
attn_mask == 0, float(0.0))
|
|
|
|
for blk in self.blocks:
|
|
blk.H, blk.W = H, W
|
|
if self.use_checkpoint:
|
|
x = checkpoint.checkpoint(blk, x, attn_mask)
|
|
else:
|
|
x = blk(x, attn_mask)
|
|
if self.downsample is not None:
|
|
x_down = self.downsample(x, H, W)
|
|
Wh, Ww = (H + 1) // 2, (W + 1) // 2
|
|
return x, H, W, x_down, Wh, Ww
|
|
else:
|
|
return x, H, W, x, H, W
|
|
|
|
|
|
class PatchEmbed(nn.Module):
|
|
""" Image to Patch Embedding
|
|
Args:
|
|
patch_size (int): Patch token size. Default: 4.
|
|
in_chans (int): Number of input image channels. Default: 3.
|
|
embed_dim (int): Number of linear projection output channels. Default: 96.
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
|
"""
|
|
|
|
def __init__(self,
|
|
patch_size=4,
|
|
in_chans=3,
|
|
embed_dim=96,
|
|
norm_layer=None):
|
|
super().__init__()
|
|
patch_size = to_2tuple(patch_size)
|
|
self.patch_size = patch_size
|
|
|
|
self.in_chans = in_chans
|
|
self.embed_dim = embed_dim
|
|
|
|
self.proj = nn.Conv2d(
|
|
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
|
if norm_layer is not None:
|
|
self.norm = norm_layer(embed_dim)
|
|
else:
|
|
self.norm = None
|
|
|
|
def forward(self, x):
|
|
"""Forward function."""
|
|
# padding
|
|
_, _, H, W = x.size()
|
|
if W % self.patch_size[1] != 0:
|
|
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
|
|
if H % self.patch_size[0] != 0:
|
|
x = F.pad(x,
|
|
(0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
|
|
|
x = self.proj(x) # B C Wh Ww
|
|
if self.norm is not None:
|
|
Wh, Ww = x.size(2), x.size(3)
|
|
x = x.flatten(2).transpose(1, 2)
|
|
x = self.norm(x)
|
|
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
|
|
|
|
return x
|
|
|
|
|
|
@BACKBONES.register_module
|
|
class SwinTransformer(nn.Module):
|
|
""" Swin Transformer backbone.
|
|
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
|
https://arxiv.org/pdf/2103.14030
|
|
Args:
|
|
pretrain_img_size (int): Input image size for training the pretrained model,
|
|
used in absolute postion embedding. Default 224.
|
|
patch_size (int | tuple(int)): Patch size. Default: 4.
|
|
in_chans (int): Number of input image channels. Default: 3.
|
|
embed_dim (int): Number of linear projection output channels. Default: 96.
|
|
depths (tuple[int]): Depths of each Swin Transformer stage.
|
|
num_heads (tuple[int]): Number of attention head of each stage.
|
|
window_size (int): Window size. Default: 7.
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
|
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
|
drop_rate (float): Dropout rate.
|
|
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
|
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
|
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
|
|
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
|
|
out_indices (Sequence[int]): Output from which stages.
|
|
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
|
-1 means not freezing any parameters.
|
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
|
dilation (bool): if True, the output size if 16x downsample, ow 32x downsample.
|
|
"""
|
|
|
|
def __init__(self,
|
|
pretrain_img_size=224,
|
|
patch_size=4,
|
|
in_chans=3,
|
|
embed_dim=96,
|
|
depths=[2, 2, 6, 2],
|
|
num_heads=[3, 6, 12, 24],
|
|
window_size=7,
|
|
mlp_ratio=4.,
|
|
qkv_bias=True,
|
|
qk_scale=None,
|
|
drop_rate=0.,
|
|
attn_drop_rate=0.,
|
|
drop_path_rate=0.2,
|
|
norm_layer=nn.LayerNorm,
|
|
ape=False,
|
|
patch_norm=True,
|
|
out_indices=(0, 1, 2, 3),
|
|
frozen_stages=-1,
|
|
dilation=False,
|
|
use_checkpoint=False):
|
|
super().__init__()
|
|
|
|
self.pretrain_img_size = pretrain_img_size
|
|
self.num_layers = len(depths)
|
|
self.embed_dim = embed_dim
|
|
self.ape = ape
|
|
self.patch_norm = patch_norm
|
|
self.out_indices = out_indices
|
|
self.frozen_stages = frozen_stages
|
|
self.dilation = dilation
|
|
|
|
# split image into non-overlapping patches
|
|
self.patch_embed = PatchEmbed(
|
|
patch_size=patch_size,
|
|
in_chans=in_chans,
|
|
embed_dim=embed_dim,
|
|
norm_layer=norm_layer if self.patch_norm else None)
|
|
|
|
# absolute position embedding
|
|
if self.ape:
|
|
pretrain_img_size = to_2tuple(pretrain_img_size)
|
|
patch_size = to_2tuple(patch_size)
|
|
patches_resolution = [
|
|
pretrain_img_size[0] // patch_size[0],
|
|
pretrain_img_size[1] // patch_size[1]
|
|
]
|
|
|
|
self.absolute_pos_embed = nn.Parameter(
|
|
torch.zeros(1, embed_dim, patches_resolution[0],
|
|
patches_resolution[1]))
|
|
trunc_normal_(self.absolute_pos_embed, std=.02)
|
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate)
|
|
|
|
# stochastic depth
|
|
dpr = [
|
|
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
|
|
] # stochastic depth decay rule
|
|
|
|
# build layers
|
|
self.layers = nn.ModuleList()
|
|
# prepare downsample list
|
|
downsamplelist = [PatchMerging for i in range(self.num_layers)]
|
|
downsamplelist[-1] = None
|
|
num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
|
|
if self.dilation:
|
|
downsamplelist[-2] = None
|
|
num_features[-1] = int(embed_dim * 2**(self.num_layers - 1)) // 2
|
|
for i_layer in range(self.num_layers):
|
|
layer = BasicLayer(
|
|
# dim=int(embed_dim * 2 ** i_layer),
|
|
dim=num_features[i_layer],
|
|
depth=depths[i_layer],
|
|
num_heads=num_heads[i_layer],
|
|
window_size=window_size,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
drop=drop_rate,
|
|
attn_drop=attn_drop_rate,
|
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
|
norm_layer=norm_layer,
|
|
# downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
|
downsample=downsamplelist[i_layer],
|
|
use_checkpoint=use_checkpoint)
|
|
self.layers.append(layer)
|
|
|
|
# num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
|
|
self.num_features = num_features
|
|
|
|
# add a norm layer for each output
|
|
for i_layer in out_indices:
|
|
layer = norm_layer(num_features[i_layer])
|
|
layer_name = f'norm{i_layer}'
|
|
self.add_module(layer_name, layer)
|
|
|
|
self._freeze_stages()
|
|
|
|
def _freeze_stages(self):
|
|
if self.frozen_stages >= 0:
|
|
self.patch_embed.eval()
|
|
for param in self.patch_embed.parameters():
|
|
param.requires_grad = False
|
|
|
|
if self.frozen_stages >= 1 and self.ape:
|
|
self.absolute_pos_embed.requires_grad = False
|
|
|
|
if self.frozen_stages >= 2:
|
|
self.pos_drop.eval()
|
|
for i in range(0, self.frozen_stages - 1):
|
|
m = self.layers[i]
|
|
m.eval()
|
|
for param in m.parameters():
|
|
param.requires_grad = False
|
|
|
|
def init_weights(self):
|
|
|
|
def _init_weights(m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
|
|
self.apply(_init_weights)
|
|
|
|
def forward_raw(self, x):
|
|
"""Forward function."""
|
|
x = self.patch_embed(x)
|
|
|
|
Wh, Ww = x.size(2), x.size(3)
|
|
if self.ape:
|
|
# interpolate the position embedding to the corresponding size
|
|
absolute_pos_embed = F.interpolate(
|
|
self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
|
|
x = (x + absolute_pos_embed).flatten(2).transpose(1,
|
|
2) # B Wh*Ww C
|
|
else:
|
|
x = x.flatten(2).transpose(1, 2)
|
|
x = self.pos_drop(x)
|
|
|
|
outs = []
|
|
for i in range(self.num_layers):
|
|
layer = self.layers[i]
|
|
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
|
# import ipdb; ipdb.set_trace()
|
|
|
|
if i in self.out_indices:
|
|
norm_layer = getattr(self, f'norm{i}')
|
|
x_out = norm_layer(x_out)
|
|
|
|
out = x_out.view(-1, H, W,
|
|
self.num_features[i]).permute(0, 3, 1,
|
|
2).contiguous()
|
|
outs.append(out)
|
|
# in:
|
|
# torch.Size([2, 3, 1024, 1024])
|
|
# outs:
|
|
# [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \
|
|
# torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])]
|
|
return tuple(outs)
|
|
|
|
def forward(self, x):
|
|
"""Forward function."""
|
|
x = self.patch_embed(x)
|
|
|
|
Wh, Ww = x.size(2), x.size(3)
|
|
if self.ape:
|
|
# interpolate the position embedding to the corresponding size
|
|
absolute_pos_embed = F.interpolate(
|
|
self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
|
|
x = (x + absolute_pos_embed).flatten(2).transpose(1,
|
|
2) # B Wh*Ww C
|
|
else:
|
|
x = x.flatten(2).transpose(1, 2)
|
|
x = self.pos_drop(x)
|
|
|
|
outs = []
|
|
for i in range(self.num_layers):
|
|
layer = self.layers[i]
|
|
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
|
|
|
if i in self.out_indices:
|
|
norm_layer = getattr(self, f'norm{i}')
|
|
x_out = norm_layer(x_out)
|
|
|
|
out = x_out.view(-1, H, W,
|
|
self.num_features[i]).permute(0, 3, 1,
|
|
2).contiguous()
|
|
outs.append(out)
|
|
return outs
|
|
|
|
def train(self, mode=True):
|
|
"""Convert the model into training mode while keep layers freezed."""
|
|
super(SwinTransformer, self).train(mode)
|
|
self._freeze_stages()
|