EasyCV/easycv/utils/checkpoint.py

97 lines
3.2 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import torch
from mmcv.parallel import is_module_wrapper
from mmcv.runner import load_checkpoint as mmcv_load_checkpoint
from mmcv.runner.checkpoint import get_state_dict, weights_to_cpu
from torch.optim import Optimizer
from easycv.file import io
from easycv.utils.constant import CACHE_DIR
def load_checkpoint(model,
filename,
map_location='cpu',
strict=False,
logger=None):
"""Load checkpoint from a file or URI.
Args:
model (Module): Module to load checkpoint.
filename (str): Accept local filepath, URL, ``torchvision://xxx``,
``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
details.
map_location (str): Same as :func:`torch.load`.
strict (bool): Whether to allow different params for the model and
checkpoint.
logger (:mod:`logging.Logger` or None): The logger for error message.
Returns:
dict or OrderedDict: The loaded checkpoint.
"""
if not filename.startswith('oss://'):
return mmcv_load_checkpoint(
model,
filename,
map_location=map_location,
strict=strict,
logger=logger)
else:
_, fname = os.path.split(filename)
cache_file = os.path.join(CACHE_DIR, fname)
if not os.path.exists(cache_file):
print(f'download checkpoint from {filename} to {cache_file}')
io.copy(filename, cache_file)
if torch.distributed.is_available(
) and torch.distributed.is_initialized():
torch.distributed.barrier()
return mmcv_load_checkpoint(
model,
cache_file,
map_location=map_location,
strict=strict,
logger=logger)
def save_checkpoint(model, filename, optimizer=None, meta=None):
"""Save checkpoint to file.
The checkpoint will have 3 fields: ``meta``, ``state_dict`` and
``optimizer``. By default ``meta`` will contain version and time info.
Args:
model (Module): Module whose params are to be saved.
filename (str): Checkpoint filename.
optimizer (:obj:`Optimizer`, optional): Optimizer to be saved.
meta (dict, optional): Metadata to be saved in checkpoint.
"""
if meta is None:
meta = {}
elif not isinstance(meta, dict):
raise TypeError(f'meta must be a dict or None, but got {type(meta)}')
out_dir = os.path.dirname(filename)
out_dir = out_dir + '/' if out_dir[-1] != '/' else out_dir
if not io.isdir(out_dir):
io.makedirs(out_dir)
if is_module_wrapper(model):
model = model.module
checkpoint = {
'meta': meta,
'state_dict': weights_to_cpu(get_state_dict(model))
}
if isinstance(optimizer, Optimizer):
checkpoint['optimizer'] = optimizer.state_dict()
elif isinstance(optimizer, dict):
checkpoint['optimizer'] = {}
for name, optim in optimizer.items():
checkpoint['optimizer'][name] = optim.state_dict()
with io.open(filename, 'wb') as ofile:
torch.save(checkpoint, ofile)