2022-04-02 20:01:06 +08:00

200 lines
5.8 KiB
Python

#!/usr/bin/env python
# model settings
# models tiny
model = dict(
stage='EDGE',
type='YOLOX_EDGE',
num_classes=80,
model_type='customized',
test_conf=0.01,
nms_thre=0.65,
depth=0.25,
width=0.125,
max_model_params=-1,
max_model_flops=-1,
activation='relu')
# train setting
samples_per_gpu = 16 # batch size per gpu
test_samples_per_gpu = 16 # test batch size per gpu
gpu_num = 4 # gpu number for one worker
total_epochs = 1 # train epoch
interval = 1
# tiny nano without mixup
img_scale = (416, 416)
random_size = (10, 20)
scale_ratio = (0.5, 1.5)
# class list; default: coco class list
CLASSES = [
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush'
]
# dataset settings
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='MMMosaic', img_scale='${img_scale}', pad_val=114.0),
dict(
type='MMRandomAffine',
scaling_ratio_range='${scale_ratio}',
border=['-${img_scale}[0] // 2', '-${img_scale}[1] // 2']),
dict(
type='MMPhotoMetricDistortion',
brightness_delta=32,
contrast_range=(0.5, 1.5),
saturation_range=(0.5, 1.5),
hue_delta=18),
dict(type='MMRandomFlip', flip_ratio=0.5),
dict(type='MMResize', keep_ratio=True),
dict(type='MMPad', pad_to_square=True, pad_val=(114.0, 114.0, 114.0)),
dict(
type='MMNormalize',
mean='${img_norm_cfg.mean}',
std='${img_norm_cfg.std}',
to_rgb='${img_norm_cfg.to_rgb}'),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='MMResize', img_scale='${img_scale}', keep_ratio=True),
dict(type='MMPad', pad_to_square=True, pad_val=(114.0, 114.0, 114.0)),
dict(
type='MMNormalize',
mean='${img_norm_cfg.mean}',
std='${img_norm_cfg.std}',
to_rgb='${img_norm_cfg.to_rgb}'),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
]
data = dict(
imgs_per_gpu='${samples_per_gpu}',
workers_per_gpu='${gpu_num}',
train=dict(
type='DetImagesMixDataset',
data_source=dict(
type='DetSourceCoco',
ann_file='data_root/annotations/instances_train2017.json',
img_prefix='data_root/train2017/',
pipeline=[
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations', with_bbox=True)
],
classes='${CLASSES}',
filter_empty_gt=False,
iscrowd=False),
pipeline='${train_pipeline}',
dynamic_scale='${img_scale}'),
val=dict(
type='DetImagesMixDataset',
imgs_per_gpu='${test_samples_per_gpu}',
data_source=dict(
type='DetSourceCoco',
ann_file='data_root/annotations/instances_val2017.json',
img_prefix='data_root/val2017/',
pipeline=[
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations', with_bbox=True)
],
classes='${CLASSES}',
filter_empty_gt=False,
iscrowd=True),
pipeline='${test_pipeline}',
dynamic_scale=None,
label_padding=False))
# additional hooks
custom_hooks = [
dict(
type='YOLOXModeSwitchHook',
no_aug_epochs=15,
skip_type_keys=('MMMosaic', 'MMRandomAffine'),
priority=48),
dict(
type='SyncRandomSizeHook',
ratio_range='${random_size}',
img_scale='${img_scale}',
interval='${interval}',
priority=48),
dict(
type='SyncNormHook',
num_last_epochs=15,
interval='${interval}',
priority=48)
]
# evaluation
eval_config = dict(interval='${interval}', gpu_collect=False)
eval_pipelines = [
dict(
mode='test',
data='${data.val}',
evaluators=[dict(type='CocoDetectionEvaluator', classes='${CLASSES}')],
)
]
checkpoint_config = dict(interval='${interval}')
# export model during training
checkpoint_sync_export = True
# optimizer
# basic_lr_per_img = 0.01 / 64.0
optimizer = dict(
type='SGD', lr=0.01, momentum=0.9, weight_decay=5e-4, nesterov=True)
optimizer_config = {}
# learning policy
lr_config = dict(
policy='YOLOX',
warmup='exp',
by_epoch=False,
warmup_by_epoch=True,
warmup_ratio=1,
warmup_iters=5,
num_last_epochs=15,
min_lr_ratio=0.05)
# exponetial model average
ema = dict(decay=0.9998)
# yapf:disable
log_config = dict(
interval=100,
hooks=[
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
dist_params = dict(backend='nccl')
cudnn_benchmark = True
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
export = dict(use_jit=False)
# oss io config
oss_io_config = dict(
ak_id='xxx',
ak_secret='xxx',
hosts='oss-cn-zhangjiakou.aliyuncs.com',
buckets=['your_bucket'])