EasyCV/configs/detection/yolox/yolox_l_8xb8_300e_coco.py
wuziheng 9aaa600f79
Yolox improve with REPConv/ASFF/TOOD (#154)
* add attention layer and more loss function

* add attention layer and various loss functions

* add siou loss

* add tah,various attention layers, and different loss functions

* add asff sim, gsconv

* blade utils fit faster

* blade optimize for yolox static & fp16

* decode output for yolox control by cfg

* add reparameterize_models for export

* e2e trt_nms plugin export support and numeric test

* split preprocess from end2end+blade, speedup from 17ms->7.2ms

Co-authored-by: zouxinyi0625 <zouxinyi.zxy@alibaba-inc.com>
2022-08-24 18:11:15 +08:00

10 lines
256 B
Python

_base_ = './yolox_s_8xb16_300e_coco.py'
# model settings
model = dict(model_type='l', head=dict(model_type='l', ))
data = dict(imgs_per_gpu=8, workers_per_gpu=4)
optimizer = dict(
type='SGD', lr=0.01, momentum=0.9, weight_decay=5e-4, nesterov=True)