EasyCV/easycv/datasets/ocr/pipelines/label_ops.py

216 lines
7.3 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import math
import os.path as osp
import cv2
import numpy as np
import requests
from easycv.datasets.registry import PIPELINES
from easycv.utils.logger import get_root_logger
@PIPELINES.register_module()
class BaseRecLabelEncode(object):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
use_space_char=False):
self.max_text_len = max_text_length
self.BEGIN_STR = 'sos'
self.END_STR = 'eos'
self.lower = False
if character_dict_path is None:
logger = get_root_logger()
logger.warning(
'The character_dict_path is None, model can only recognize number and lower letters'
)
self.character_str = '0123456789abcdefghijklmnopqrstuvwxyz'
dict_character = list(self.character_str)
self.lower = True
else:
self.character_str = []
if character_dict_path.startswith('http'):
r = requests.get(character_dict_path)
tpath = character_dict_path.split('/')[-1]
while not osp.exists(tpath):
try:
with open(tpath, 'wb') as code:
code.write(r.content)
except:
pass
character_dict_path = tpath
with open(character_dict_path, 'rb') as fin:
lines = fin.readlines()
for line in lines:
line = line.decode('utf-8').strip('\n').strip('\r\n')
self.character_str.append(line)
if use_space_char:
self.character_str.append(' ')
dict_character = list(self.character_str)
dict_character = self.add_special_char(dict_character)
self.dict = {}
for i, char in enumerate(dict_character):
self.dict[char] = i
self.character = dict_character
def add_special_char(self, dict_character):
return dict_character
def encode(self, text):
"""convert text-label into text-index.
input:
text: text labels of each image. [batch_size]
output:
text: concatenated text index for CTCLoss.
[sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
length: length of each text. [batch_size]
"""
if len(text) == 0 or len(text) > self.max_text_len:
return None
if self.lower:
text = text.lower()
text_list = []
for char in text:
if char not in self.dict:
# logger = get_logger()
# logger.warning('{} is not in dict'.format(char))
continue
text_list.append(self.dict[char])
if len(text_list) == 0:
return None
return text_list
@PIPELINES.register_module()
class CTCLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
use_space_char=False,
**kwargs):
self.BLANK = ['blank']
super(CTCLabelEncode,
self).__init__(max_text_length, character_dict_path,
use_space_char)
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
data['length'] = np.array(len(text))
text = text + [0] * (self.max_text_len - len(text))
data['label'] = np.array(text)
label = [0] * len(self.character)
for x in text:
label[x] += 1
data['label_ace'] = np.array(label)
return data
def add_special_char(self, dict_character):
dict_character = self.BLANK + dict_character
return dict_character
@PIPELINES.register_module()
class SARLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
use_space_char=False,
**kwargs):
self.BEG_END_STR = '<BOS/EOS>'
self.UNKNOWN_STR = '<UKN>'
self.PADDING_STR = '<PAD>'
super(SARLabelEncode,
self).__init__(max_text_length, character_dict_path,
use_space_char)
def add_special_char(self, dict_character):
dict_character = dict_character + [self.UNKNOWN_STR]
self.unknown_idx = len(dict_character) - 1
dict_character = dict_character + [self.BEG_END_STR]
self.start_idx = len(dict_character) - 1
self.end_idx = len(dict_character) - 1
dict_character = dict_character + [self.PADDING_STR]
self.padding_idx = len(dict_character) - 1
return dict_character
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len - 1:
return None
data['length'] = np.array(len(text))
target = [self.start_idx] + text + [self.end_idx]
padded_text = [self.padding_idx for _ in range(self.max_text_len)]
padded_text[:len(target)] = target
data['label'] = np.array(padded_text)
return data
def get_ignored_tokens(self):
return [self.padding_idx]
@PIPELINES.register_module()
class MultiLabelEncode(BaseRecLabelEncode):
def __init__(self,
max_text_length,
character_dict_path=None,
use_space_char=False,
**kwargs):
super(MultiLabelEncode,
self).__init__(max_text_length, character_dict_path,
use_space_char)
self.ctc_encode = CTCLabelEncode(max_text_length, character_dict_path,
use_space_char, **kwargs)
self.sar_encode = SARLabelEncode(max_text_length, character_dict_path,
use_space_char, **kwargs)
def __call__(self, data):
data_ctc = copy.deepcopy(data)
data_sar = copy.deepcopy(data)
data_out = dict()
data_out['img_path'] = data.get('img_path', None)
data_out['img'] = data['img']
ctc = self.ctc_encode(data_ctc)
sar = self.sar_encode(data_sar)
if ctc is None or sar is None:
return None
data_out['label_ctc'] = ctc['label']
data_out['label_sar'] = sar['label']
data_out['length'] = ctc['length']
return data_out