mirror of https://github.com/alibaba/EasyCV.git
216 lines
7.3 KiB
Python
216 lines
7.3 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import copy
|
|
import math
|
|
import os.path as osp
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import requests
|
|
|
|
from easycv.datasets.registry import PIPELINES
|
|
from easycv.utils.logger import get_root_logger
|
|
|
|
|
|
@PIPELINES.register_module()
|
|
class BaseRecLabelEncode(object):
|
|
""" Convert between text-label and text-index """
|
|
|
|
def __init__(self,
|
|
max_text_length,
|
|
character_dict_path=None,
|
|
use_space_char=False):
|
|
|
|
self.max_text_len = max_text_length
|
|
self.BEGIN_STR = 'sos'
|
|
self.END_STR = 'eos'
|
|
self.lower = False
|
|
|
|
if character_dict_path is None:
|
|
logger = get_root_logger()
|
|
logger.warning(
|
|
'The character_dict_path is None, model can only recognize number and lower letters'
|
|
)
|
|
self.character_str = '0123456789abcdefghijklmnopqrstuvwxyz'
|
|
dict_character = list(self.character_str)
|
|
self.lower = True
|
|
else:
|
|
self.character_str = []
|
|
if character_dict_path.startswith('http'):
|
|
r = requests.get(character_dict_path)
|
|
tpath = character_dict_path.split('/')[-1]
|
|
while not osp.exists(tpath):
|
|
try:
|
|
with open(tpath, 'wb') as code:
|
|
code.write(r.content)
|
|
except:
|
|
pass
|
|
character_dict_path = tpath
|
|
with open(character_dict_path, 'rb') as fin:
|
|
lines = fin.readlines()
|
|
for line in lines:
|
|
line = line.decode('utf-8').strip('\n').strip('\r\n')
|
|
self.character_str.append(line)
|
|
if use_space_char:
|
|
self.character_str.append(' ')
|
|
dict_character = list(self.character_str)
|
|
dict_character = self.add_special_char(dict_character)
|
|
self.dict = {}
|
|
for i, char in enumerate(dict_character):
|
|
self.dict[char] = i
|
|
self.character = dict_character
|
|
|
|
def add_special_char(self, dict_character):
|
|
return dict_character
|
|
|
|
def encode(self, text):
|
|
"""convert text-label into text-index.
|
|
input:
|
|
text: text labels of each image. [batch_size]
|
|
|
|
output:
|
|
text: concatenated text index for CTCLoss.
|
|
[sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
|
|
length: length of each text. [batch_size]
|
|
"""
|
|
if len(text) == 0 or len(text) > self.max_text_len:
|
|
return None
|
|
if self.lower:
|
|
text = text.lower()
|
|
text_list = []
|
|
for char in text:
|
|
if char not in self.dict:
|
|
# logger = get_logger()
|
|
# logger.warning('{} is not in dict'.format(char))
|
|
continue
|
|
text_list.append(self.dict[char])
|
|
if len(text_list) == 0:
|
|
return None
|
|
return text_list
|
|
|
|
|
|
@PIPELINES.register_module()
|
|
class CTCLabelEncode(BaseRecLabelEncode):
|
|
""" Convert between text-label and text-index """
|
|
|
|
def __init__(self,
|
|
max_text_length,
|
|
character_dict_path=None,
|
|
use_space_char=False,
|
|
**kwargs):
|
|
self.BLANK = ['blank']
|
|
super(CTCLabelEncode,
|
|
self).__init__(max_text_length, character_dict_path,
|
|
use_space_char)
|
|
|
|
def __call__(self, data):
|
|
text = data['label']
|
|
text = self.encode(text)
|
|
if text is None:
|
|
return None
|
|
data['length'] = np.array(len(text))
|
|
text = text + [0] * (self.max_text_len - len(text))
|
|
data['label'] = np.array(text)
|
|
|
|
label = [0] * len(self.character)
|
|
for x in text:
|
|
label[x] += 1
|
|
data['label_ace'] = np.array(label)
|
|
return data
|
|
|
|
def add_special_char(self, dict_character):
|
|
dict_character = self.BLANK + dict_character
|
|
return dict_character
|
|
|
|
|
|
@PIPELINES.register_module()
|
|
class SARLabelEncode(BaseRecLabelEncode):
|
|
""" Convert between text-label and text-index """
|
|
|
|
def __init__(self,
|
|
max_text_length,
|
|
character_dict_path=None,
|
|
use_space_char=False,
|
|
**kwargs):
|
|
self.BEG_END_STR = '<BOS/EOS>'
|
|
self.UNKNOWN_STR = '<UKN>'
|
|
self.PADDING_STR = '<PAD>'
|
|
super(SARLabelEncode,
|
|
self).__init__(max_text_length, character_dict_path,
|
|
use_space_char)
|
|
|
|
def add_special_char(self, dict_character):
|
|
dict_character = dict_character + [self.UNKNOWN_STR]
|
|
self.unknown_idx = len(dict_character) - 1
|
|
dict_character = dict_character + [self.BEG_END_STR]
|
|
self.start_idx = len(dict_character) - 1
|
|
self.end_idx = len(dict_character) - 1
|
|
dict_character = dict_character + [self.PADDING_STR]
|
|
self.padding_idx = len(dict_character) - 1
|
|
|
|
return dict_character
|
|
|
|
def __call__(self, data):
|
|
text = data['label']
|
|
text = self.encode(text)
|
|
if text is None:
|
|
return None
|
|
if len(text) >= self.max_text_len - 1:
|
|
return None
|
|
data['length'] = np.array(len(text))
|
|
target = [self.start_idx] + text + [self.end_idx]
|
|
padded_text = [self.padding_idx for _ in range(self.max_text_len)]
|
|
|
|
padded_text[:len(target)] = target
|
|
data['label'] = np.array(padded_text)
|
|
return data
|
|
|
|
def get_ignored_tokens(self):
|
|
return [self.padding_idx]
|
|
|
|
|
|
@PIPELINES.register_module()
|
|
class MultiLabelEncode(BaseRecLabelEncode):
|
|
|
|
def __init__(self,
|
|
max_text_length,
|
|
character_dict_path=None,
|
|
use_space_char=False,
|
|
**kwargs):
|
|
super(MultiLabelEncode,
|
|
self).__init__(max_text_length, character_dict_path,
|
|
use_space_char)
|
|
|
|
self.ctc_encode = CTCLabelEncode(max_text_length, character_dict_path,
|
|
use_space_char, **kwargs)
|
|
self.sar_encode = SARLabelEncode(max_text_length, character_dict_path,
|
|
use_space_char, **kwargs)
|
|
|
|
def __call__(self, data):
|
|
|
|
data_ctc = copy.deepcopy(data)
|
|
data_sar = copy.deepcopy(data)
|
|
data_out = dict()
|
|
data_out['img_path'] = data.get('img_path', None)
|
|
data_out['img'] = data['img']
|
|
ctc = self.ctc_encode(data_ctc)
|
|
sar = self.sar_encode(data_sar)
|
|
if ctc is None or sar is None:
|
|
return None
|
|
data_out['label_ctc'] = ctc['label']
|
|
data_out['label_sar'] = sar['label']
|
|
data_out['length'] = ctc['length']
|
|
return data_out
|